
1	

C	
 vs.	
 VHDL:	
 Benchmarking	
 CAESAR	

Candidates	
 Using	
 High-­‐Level	
 Synthesis	

and	
 Register-­‐Transfer	
 Level	

Methodologies	
 	

Ekawat	
 Homsirikamol,	
 	

William	
 Diehl,	
 Ahmed	
 Ferozpuri,	

Farnoud	
 Farahmand,	
 	

and	
 Kris	
 Gaj	

George	
 Mason	
 University	

USA	

http:/cryptography.gmu.edu
https://cryptography.gmu.edu/athena

Primary	
 High-­‐Level	
 Synthesis	
 (HLS)	

Support	
 for	
 This	
 Project	

Ekawat Homsirikamol
a.k.a “Ice”

Working on the PhD Thesis
entitled

“A New Approach to the Development
of Cryptographic Standards Based

on the Use of
High-Level Synthesis Tools”

Register-­‐Transfer	
 Level	
 (RTL)	
 Designs	

provided	
 by	

“Ice” Will Ahmed Farnoud
Homsirikamol Diehl Ferozpuri Farahmand

PAEQ
PRIMATEs-APE
PRIMATEs-GIBBON
PRIMATEs-HANUMAN

Minalpher
POET
SCREAM

AES-COPA
CLOC

AES-GCM, ASCON,
Deoxys, ICEPOLE,
Joltik, Keyak, OCB

Cryptographic Standard Contests

time
97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

AES

NESSIE

CRYPTREC

eSTREAM

SHA-3

34 stream 4 HW winners
ciphers → + 4 SW winners

51 hash functions → 1 winner

15 block ciphers → 1 winner

IX.1997 X.2000

I.2000 XII.2002

IV.2008

X.2007 X.2012

XI.2004

CAESAR
I.2013

57 authenticated ciphers → multiple winners

XII.2017

5

Evaluation Criteria

Security

Software Efficiency Hardware Efficiency

Simplicity

FPGAs ASICs

Flexibility Licensing

µProcessors µControllers

6

Manual
Design

HDL	
 Code	

Manual Optimization
FPGA	
 Tools	

Netlist	

Post	

Place	
 &	
 Route	

Results	

Functional
Verification

Timing
Verification

Informal	
 SpecificaVon	
 Test	
 Vectors	

Traditional Development & Benchmarking Flow

7

Manual
Design

HDL	
 Code	

Automated Optimization
FPGA	
 Tools	

Netlist	

Post	

Place	
 &	
 Route	

Results	

Functional
Verification

Timing
Verification

Informal	
 SpecificaVon	
 Test	
 Vectors	

Extended Traditional
Development & Benchmarking Flow

Xilinx ISE + ATHENa
Vivado + Default Strategies

8

•  Large number of candidates
•  Long time necessary to develop and verify

RTL (Register-Transfer Level)
Hardware Description Language (HDL) codes

•  Multiple variants of algorithms
(e.g., multiple key, nonce, and tag sizes)

•  High-speed vs. lightweight algorithms
•  Multiple hardware architectures
•  Dependence on skills of designers

Remaining Difficulties of Hardware Benchmarking

9

High-Level Synthesis (HLS)

High Level Language
(e.g. C, C++, SystemC)

Hardware Description Language
(e.g., VHDL or Verilog)

High-Level
Synthesis

10

AutoESL Design Technologies, Inc. (25 employees)
Flagship product:
 AutoPilot, translating C/C++/System C to VHDL or Verilog
•  Acquired by the biggest FPGA company, Xilinx Inc., in 2011
•  AutoPilot integrated into the primary Xilinx toolset, Vivado, as
 Vivado HLS, released in 2012

 “High-Level Synthesis for the Masses”

Cinderella Story: Vivado HLS

11

•  Ranking of candidate algorithms in cryptographic contests
in terms of their performance in modern FPGAs &
All-Programmable SoCs will remain the same independently
whether the HDL implementations are developed manually
or generated automatically using High-Level Synthesis tools

•  The development time will be reduced by at least an order of
magnitude

Our Hypotheses

12

Early feedback for designers of cryptographic algorithms
•  Typical design process based only on security analysis

and software benchmarking
•  Lack of immediate feedback on hardware performance
•  Common unpleasant surprises, e.g.,

§  Mars in the AES Contest
§  BMW, ECHO, and SIMD in the SHA-3 Contest

Potential Additional Benefits

13

High-Level Synthesis

HDL	
 Code	

Automated Optimization
FPGA	
 Tools	

Netlist	

Post	

Place	
 &	
 Route	

Results	

Functional
Verification

Timing
Verification

Reference	
 ImplementaVon	
 in	
 C	

Test	
 Vectors	

Manual Modifications
(pragmas, tweaks)

HLS-­‐ready	
 C	
 code	

Proposed HLS-Based
Development and Benchmarking Flow

Xilinx ISE + ATHENa
Vivado + Default Strategies

14

Examples of Source Code Modifications

for (i = 0; i < 4; i ++)
#pragma HLS UNROLL
 for (j = 0; j < 4; j ++)
#pragma HLS UNROLL
 b[i][j] = s[i][j];

Unrolling of loops:

Function Reuse:

void KeyUpdate (word8 k[4][4],
 word8 round)
{
 #pragma HLS INLINE

 ...
}

Flattening function's hierarchy:

15

•  13 Round 1 CAESAR candidates + current standard AES-GCM
(2 more in progress)

•  Basic iterative architecture
•  GMU AEAD Hardware API
•  Key scheduling and padding done in hardware
•  Implementations developed in parallel using RTL and HLS

methodology
•  Starting point: Informal specifications and reference software

implementations in C provided by the algorithm authors
•  Post P&R results generated for

 - Xilinx Virtex 6 using Xilinx ISE + ATHENa, and
 - Virtex 7 and Zynq 7000 using Xilinx Vivado with 25 default
 option optimization strategies

•  No use of BRAMs or DSP Units in AEAD Core

Our Test Case

16

Parameters of Authenticated Ciphers
Algorithm Key size Nonce size Tag size Basic Primitive

Block Cipher Based
AES-COPA 128 128 128 AES
AES-GCM 128 96 128 AES
CLOC 128 96 128 AES
Deoxys≠ 128 64 128 Deoxys-BC

(AES)
Joltik 128 32 64 Joltik-BC
OCB 128 96 128 AES
POET 128 128 128 AES
SCREAM 128 96 128 TLS

17

Parameters of Authenticated Ciphers
Algorithm Key size Nonce size Tag size Basic Primitive

Permutation Based
ASCON 128 128 128 SPN
ICEPOLE 128 128 128 Keccak-like
Keyak 128 128 128 Keccak-f
PAEQ 128 96 128 AESQ
PRIMATEs-
GIBBON

120 120 120 PRIMATE

PRIMATEs-
HANUMAN

120 120 120 PRIMATE

18

AEAD Interface

clk

sdi

sdi_valid

sdi_ready

sw

pdi

pdi_valid

pdi_ready

w

Public Data Input

Ports

PDI

Secret Data Input

Ports

SDI

clk rst

Data Output

Ports

DO
w

do

do_ready

do_valid

AEAD

rst

19

Parameters of Ciphers & GMU Implementations
Algorithm Word

Size, w
Block
Size, b

#Rounds Cycles/Block
RTL

Cycles/Block
HLS

Block-cipher Based
AES-COPA 32 128 10 11 12
AES-GCM 32 128 10 11 12
CLOC 32 128 10 11 12
Deoxys 32 128 14 29 32
Joltik 32 128 32 65 70
OCB 32 128 10 11 12
POET 32 128 10 11 12
SCREAM 32 128 10 11 12

20

Parameters of Ciphers & GMU Implementations
Algorithm Word

Size, w
Block
Size, b

#Rounds Cycles/Block
RTL

Cycles/Block
HLS

Permutation Based
ASCON 32 64 6 7 8
ICEPOLE 256 1024 6 6 8
Keyak 128 1344 12 12 14
PAEQ 32 368 (M)/

240 (AD)
20 21 22

PRIMATEs-
GIBBON

40 40 6 7 8

PRIMATEs-
HANUMAN

40 40 12 13 14

21

Datapath vs. Control Unit

Datapath Control
Unit

Data Inputs

Data Outputs

Control Inputs

Control Outputs

Control
Signals

Status
Signals

Determines
•  Area
•  Clock Frequency

Determines
•  Number of clock cycles

22

Control Unit suboptimal
•  Difficulty in inferring an overlap between completing the last

round and reading the next input block
•  One additional clock cycle used for initialization of the state at

the beginning of each round
•  The formulas for throughput:

HLS: Throughput = Block_size / ((#Rounds+2) * TCLK)

RTL: Throughput = Block_size / (#Rounds+C * TCLK)
 C=0, 1 depending on the algorithm

Encountered Problems

23

RTL vs. HLS Clock Frequency in Virtex 7

24

RTL vs. HLS Throughput in Virtex 7

25

RTL vs. HLS Ratios in Virtex 7

Clock Frequency Throughput

26

RTL vs. HLS #LUTs in Virtex 7

27

RTL vs. HLS Throughput/#LUTs in Virtex 7

28

RTL vs. HLS Ratios in Virtex 7

#LUTs Throughput/#LUTs

29

Throughput vs. LUTs in Virtex 7

RTL

HLS

30

RTL vs. HLS Throughput

31

RTL vs. HLS #LUTs

32

RTL vs. HLS Throughput/#LUTs

33

•  Available at
 http://cryptography.gmu.edu/athena

•  Developed by John Pham, a Master’s-level student of
Jens-Peter Kaps

•  Results can be entered by designers themselves.
If you would like to do that, please contact us regarding
an account.

•  The ATHENa Option Optimization Tool supports automatic
generation of results suitable for uploading to the database

ATHENa Database of Results for Authenticated Ciphers

34

Ranking View (1)

35

Ranking View (2)

36	

37	

38	

39

•  High-level synthesis offers a potential to facilitate hardware
benchmarking during the design of cryptographic algorithms and
at the early stages of cryptographic contests

•  Case study based on 13 Round 1 CAESAR candidates

& AES-GCM demonstrated correct ranking for majority of candidates
using all major performance metrics

•  More research & development needed to overcome remaining

difficulties
•  Suboptimal control unit of HLS implementations
•  Wide range of RTL to HLS performance metric ratios
•  A few potentially suboptimal HLS or RTL implementations
•  Efficient and reliable generation of HLS-ready C codes

Conclusions

Comments?

Thank you!

40

Questions?

Suggestions?
ATHENa: http:/cryptography.gmu.edu/athena

CERG: http://cryptography.gmu.edu

