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Evaluation Criteria 

Security 

Software  Efficiency  Hardware Efficiency  

Simplicity 

FPGAs ASICs 

Flexibility Licensing 

µProcessors µControllers 
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•  Large number of candidates 
•  Long time necessary to develop and verify  

RTL (Register-Transfer Level) 
Hardware Description Language (HDL) codes 

•  Multiple variants of algorithms  
(e.g., multiple key, nonce, and tag sizes) 

•  High-speed vs. lightweight algorithms 
•  Multiple hardware architectures  
•  Dependence on skills of designers 

Remaining Difficulties of Hardware Benchmarking 
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High-Level Synthesis (HLS) 

High Level Language 
(e.g. C, C++, SystemC) 

Hardware Description Language 
(e.g., VHDL or Verilog) 

High-Level 
Synthesis 
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AutoESL Design Technologies, Inc. (25 employees) 
Flagship product:  
          AutoPilot, translating C/C++/System C to VHDL or Verilog 
•  Acquired by the biggest FPGA company, Xilinx Inc., in 2011 
•  AutoPilot integrated into the primary Xilinx toolset, Vivado, as  
              Vivado HLS, released in 2012 
 
                       “High-Level Synthesis for the Masses” 
 
 

Cinderella Story: Vivado HLS 
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•  Ranking of candidate algorithms in cryptographic contests 
in terms of their performance in modern FPGAs &  
All-Programmable SoCs will remain the same independently 
whether the HDL implementations are developed manually 
or generated automatically using High-Level Synthesis tools 

•  The development time will be reduced by at least an order of 
magnitude 

Our Hypotheses 
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Early feedback for designers of cryptographic algorithms 
•  Typical design process based only on security analysis 

and software benchmarking 
•  Lack of immediate feedback on hardware performance 
•  Common unpleasant surprises, e.g.,  

§  Mars in the AES Contest 
§  BMW, ECHO, and SIMD in the SHA-3 Contest 

Potential Additional Benefits 
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Examples of Source Code Modifications 

for (i = 0; i < 4; i ++)  
#pragma HLS UNROLL 
     for (j = 0; j < 4; j ++)  
#pragma HLS UNROLL 
         b[i][j] = s[i][j]; 

Unrolling of loops: 

Function Reuse: 

void KeyUpdate (word8 k[4][4],  
                word8 round)  
{  
 #pragma HLS INLINE 

  ... 
} 

 

Flattening function's hierarchy: 
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•  13 Round 1 CAESAR candidates + current standard AES-GCM  
(2 more in progress) 

•  Basic iterative architecture 
•  GMU AEAD Hardware API 
•  Key scheduling and padding done in hardware 
•  Implementations developed in parallel using RTL and HLS 

methodology 
•  Starting point: Informal specifications and reference software 

implementations in C provided by the algorithm authors 
•  Post P&R results generated for 

       - Xilinx Virtex 6 using Xilinx ISE + ATHENa, and  
       - Virtex 7 and Zynq 7000 using Xilinx Vivado with 25 default  
         option optimization strategies 

•  No use of BRAMs or DSP Units in AEAD Core 

Our Test Case 
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Parameters of Authenticated Ciphers 
Algorithm Key size Nonce size Tag size Basic Primitive 

Block Cipher Based 
AES-COPA 128 128 128 AES 
AES-GCM 128 96 128 AES 
CLOC 128 96 128 AES 
Deoxys≠ 128 64 128 Deoxys-BC 

(AES) 
Joltik 128 32 64 Joltik-BC 
OCB 128 96 128 AES 
POET 128 128 128 AES 
SCREAM 128 96 128 TLS 
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Parameters of Authenticated Ciphers 
Algorithm Key size Nonce size Tag size Basic Primitive 

Permutation Based 
ASCON 128 128 128 SPN 
ICEPOLE 128 128 128 Keccak-like 
Keyak 128 128 128 Keccak-f 
PAEQ 128 96 128 AESQ 
PRIMATEs-
GIBBON 

120 120 120 PRIMATE 

PRIMATEs-
HANUMAN 

120 120 120 PRIMATE 



18 

AEAD Interface 
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Parameters of Ciphers & GMU Implementations 
Algorithm Word  

Size, w 
Block  
Size, b 

#Rounds Cycles/Block 
RTL 

 

Cycles/Block 
HLS 

Block-cipher Based 
AES-COPA 32 128 10 11 12 
AES-GCM 32 128 10 11 12 
CLOC 32 128 10 11 12 
Deoxys 32 128 14 29 32 
Joltik 32 128 32 65 70 
OCB 32 128 10 11 12 
POET 32 128 10 11 12 
SCREAM 32 128 10 11 12 
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Parameters of Ciphers & GMU Implementations 
Algorithm Word  

Size, w 
Block  
Size, b 

#Rounds Cycles/Block 
RTL 

 

Cycles/Block 
HLS 

Permutation Based 
ASCON 32 64 6 7 8 
ICEPOLE 256 1024 6 6 8 
Keyak 128 1344 12 12 14 
PAEQ 32 368 (M)/ 

240 (AD) 
20 21 22 

PRIMATEs-
GIBBON 

40 40 6 7 8 

PRIMATEs-
HANUMAN 

40 40 12 13 14 
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Datapath vs. Control Unit 

Datapath Control  
Unit 

Data Inputs 

Data Outputs 

Control Inputs 

Control Outputs 

Control  
Signals 

Status 
Signals 

Determines 
•  Area 
•  Clock Frequency 

Determines 
•  Number of clock cycles 
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Control Unit suboptimal 
•  Difficulty in inferring an overlap between completing the last 

round and reading the next input block 
•  One additional clock cycle used for initialization of the state at 

the beginning of each round 
•  The formulas for throughput: 

HLS:  Throughput = Block_size / ((#Rounds+2) * TCLK) 
 
RTL:  Throughput = Block_size / (#Rounds+C * TCLK) 
                    C=0, 1 depending on the algorithm 

Encountered Problems 
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RTL vs. HLS Clock Frequency in Virtex 7 
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RTL vs. HLS Throughput in Virtex 7 
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RTL vs. HLS Ratios in Virtex 7 

Clock Frequency Throughput 
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RTL vs. HLS #LUTs in Virtex 7 
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RTL vs. HLS Throughput/#LUTs in Virtex 7 



28 

RTL vs. HLS Ratios in Virtex 7 

#LUTs Throughput/#LUTs 



29 

Throughput vs. LUTs in Virtex 7 

RTL 

HLS 
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RTL vs. HLS Throughput 
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RTL vs. HLS #LUTs 
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RTL vs. HLS Throughput/#LUTs 
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•  Available at 
  http://cryptography.gmu.edu/athena 
  

•  Developed by John Pham, a Master’s-level student of  
Jens-Peter Kaps 

•  Results can be entered by designers themselves. 
If you would like to do that, please contact us regarding  
an account. 

•  The ATHENa Option Optimization Tool supports automatic 
generation of results suitable for uploading to the database 

ATHENa Database of Results for Authenticated Ciphers 
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Ranking View (1) 
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Ranking View (2) 
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•  High-level synthesis offers a potential to facilitate hardware 
benchmarking during the design of cryptographic algorithms and  
at the early stages of cryptographic contests 

 
•  Case study based on 13 Round 1 CAESAR candidates  

& AES-GCM demonstrated correct ranking for majority of candidates 
using all major performance metrics 

 
•  More research & development needed to overcome remaining 

difficulties 
•  Suboptimal control unit of HLS implementations 
•  Wide range of RTL to HLS performance metric ratios 
•  A few potentially suboptimal HLS or RTL implementations 
•  Efficient and reliable generation of HLS-ready C codes 

Conclusions 



Comments? 

Thank you! 
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Questions? 

Suggestions? 
ATHENa:  http:/cryptography.gmu.edu/athena  

CERG: http://cryptography.gmu.edu 


