
1	

Lessons	Learned	from	High-Speed	
Implementa6on	and	Benchmarking	of	

Two	Post-Quantum	Public-Key	
Cryptosystems	

Malik	Umar	Sharif,		
Ahmed	Ferozpuri,	and		

Kris	Gaj	
George	Mason	University	

USA	

Partially supported by NIST under grant no. 60NANB15D058

Co-Authors

Ahmed Ferozpuri Malik Umar Sharif

PhD Students
in the Cryptographic Engineering
Research Group (CERG) at GMU

3

•  Quantum Computers could potentially break all current
American federal standards in the area of public-key cryptography
(RSA, ECC, Diffie-Hellman)

•  Increasing key sizes would be futile
•  Public key cryptographic families presumed resistant against

quantum computing cryptanalysis collectively referred to as
Post-Quantum Cryptography (PQC)

•  PQC algorithms capable of
•  being implemented using any traditional methods, including

software and hardware
•  running efficiently on any modern computing platforms: PCs,

tablets, smartphones, servers with hardware accelerators, etc.

Post-Quantum Cryptography

4

•  New public-key cryptographic families: mid-1990s-present
•  Series of PQCrypto Conferences: 2006-present
•  NIST Workshop on Cybersecurity in a Post-Quantum World 2015
•  NIST announcement of standardization plans at PQCrypto 2016:

Feb. 2016
•  NIST Call for Proposals and Request for Nominations for Public-Key

Post-Quantum Cryptographic Algorithms: Dec. 2016
 Deadline for submitting candidates: November 30, 2017
•  Time of Standard Development + Time of Standard Deployment

 + Max. Protection Time
 must be smaller than
 Time to Develop Sufficiently Large Quantum Computer

Post-Quantum Cryptography Efforts

5

Promising PQC Families

Family Encryption Signature Key Agreement

Hash-based XX

Code-based XX X

Lattice-based XX X

Multivariate X XX

Supersingular
Elliptic Curve
Isogeny

XX

XX – high-confidence candidates, X – medium-confidence candidates

6

Paving the way for the future comprehensive, fair, and efficient
hardware benchmarking of PQC candidates through

1.  Uniform Hardware API
2.  Uniform & Efficient Development Process based on

a.  detailed flow diagrams
b.   choice of supported parameter sets
c.  top-level & lower-level block diagrams
d.   cycle-based timing analysis
e.  Algorithmic State Machine (ASM) charts
f.   Register-Transfer Level (RTL) code
g.   software-generated test vectors
h.   comprehensive testbenches
i.   results of synthesis and implementation
j.   analysis of results & lessons learned

Our Objectives

7

Minimum Compliance Criteria
•  Encryption & decryption, or
 Signature generation & verification
•  External key generation (e.g., in software)
•  Permitted data port widths, etc.

Communication Protocol

Interface Timing Characteristics

Proposed Uniform Hardware API

8

1.  NTRUEncrypt Short Vector Encryption Scheme (SVES)
 fully compliant with

IEEE 1363.1 Standard Specification for Public Key Cryptographic
Techniques Based on Hard Problems over Lattices

Parameter sets:
•  Optimized for speed
•  192-bit security: ees1087ep1: p=3, q=2048, N=1087, df=dr=63
•  256-bit security: ees1499ep1: p=3, q=2048, N=1499, df=dr=79

2.  Multivariate Rainbow Signature Scheme

Parameter set:
•  (17,12)(1,12)
•  80-bit security level

Algorithms Selected for a Pilot Study

9

•  IEEE 1363.1 Standard Specification for Public Key Cryptographic
Techniques Based on Hard Problems over Lattices, 2009

•  Financial Services Industry’s Accredited Standards Committee X9,
ANSI X9.98-2010, Lattice-Based Polynomial Public Key Establishment
Algorithm for the Financial Services Industry, 2010

•  Consortium for Efficient Embedded Security, Efficient Embedded
Security Standards (EESS), EESS #1: Implementation Aspects of
NTRUEncrypt, 2015

•  J. Schanck, W. Whyte, Z. Zhang, “Quantum-Safe Hybrid (QSH)
Ciphersuite for Transport Layer Security (TLS) version 1.3,”
TLS Working Group Internet Draft, Oct. 2016 (work in progress)

NTRUEncrypt Standards

10

•  Optimization for speed
•  Minimum Latency
•  Maximum Number of Operations per Second

•  Application: high-end servers supporting a very large
number of TLS, IPSec, and other protocol transactions

•  Key generation performed externally, e.g., in software
•  No countermeasures against side-channel attacks
•  Full Compliance with Existing Standards (if available)

Implementation Assumptions

11

NTRUEncrypt – Core Functionality (1)

Parameters:
 N – prime
 p – small prime, typically 3
 q – power of 2, typically 2048

Basic Operations:
 Polynomial Multiplication, Addition, Subtraction in the ring Z/qZ[X]/XN-1

Private Key:
 f = 1+pF, where F – random polynomial with small coefficients {-1, 0, 1}

Public Key:
 h = f-1 * g � p, and
 g – random polynomial with small coefficients {-1, 0, 1}

12

NTRUEncrypt – Core Functionality (2)

Encryption:
 e = r * h + m (mod q)
 where r is a random polynomial with small coefficients

Decryption:

1) calculate f ∗ e (mod q)
2) shift coefficients of the obtained polynomial to the range [−q/2, q/2),
3) reduce the obtained coefficients mod p

13

NTRUEncrypt – Flow Diagram for Encryption

Random
Bits

Message
Zero

Padding

Public
Key

Ciphertext

Blinding Polynomial
Generation Method

Mask Generation
Function

Truncated
Public
Key

Bits to
Ternary Digits

Object ID
Message Random

Bits Msg
Length

Check for the minimum no.
of 1s, -1s, and 0s

14

NTRUEncrypt – Flow Diagram for Decryption

Private
Key

Decrypted
Message

Decrypted
Random

Bits

Ternary Digits
to Bits

Ciphertext

Ciphertext

Public
Key

Truncated
Public
Key

Object
ID

Decrypted
Msg Length

Mask Generation
Function

Check
cR’==cR

Check for the
minimum no.

of 1s, -1s, and 0s

Padding
Check

15

NTRUEncrypt: Supported Parameter Sets

16

NTRUEncrypt – Top-Level Block Diagram IDCU –
Input
Data

Conversion
Unit

ODCU –
Output
Data

Conversion
Unit

DFU – Data
Formatting Unit

Top-Level
Block Diagram

SIPO – Serial In Parallel Out

PISO – Parallel In Serial Out

17

Block Diagram of Polynomial Multiplier
Enc: Public Key, h
Dec: Ciphertext, e

Dec: Ciphertext, e

Enc: R=r*h
Dec: f*e

Enc: Random Polynomial, r
Dec: Private Key, f

Execution Time:
Enc: 3*dr
Dec: 3*df

18

Block Diagram of Blinding Polynomial Generation
Method / Mask Generation Function

BWC – Bit Width Conversion

O2T – Octets to Ternary Digits

PISO – Parallel In Serial Out

Implementation of SHA-2
modified to share
computations for
hashing of strings

starting from the same
common substring

19

Sharing Computations for Multiple Overlapping Inputs

Case 1: t+n-1 input blocks
h(sData||C1)=h(sData_0, …, sData_t-1, sData_t||C1)
h(sData||C2)=h(sData_0, …, sData_t-1, sData_t||C2)
h(sData||C3)=h(sData_0, …, sData_t-1, sData_t||C3)
……
h(sData||Cn)=h(sData_0, …, sData_t-1, sData_t||Cn)

Case 2: t+2(n-1) input blocks
h(sData||C1)=h(sData_0, …, sData_t-1, sData_t||C1_0, C1_1)
h(sData||C2)=h(sData_0, …, sData_t-1, sData_t||C2_0, C2_1)
h(sData||C3)=h(sData_0, …, sData_t-1, sData_t||C3_0, C3_1)
……
h(sData||Cn)=h(sData_0, …, sData_t-1, sData_t||Cn_0, Cn_1)

20

Implementation Platforms

Hardware:

FPGA Family: Xilinx Kintex-7 UltraSCALE
Device: XCKU035-FFVA1156
Technology: 20nm CMOS

Software:

Cortex A9 ARM Core of Zynq 7020

21

Major Component Operations
Resource Utilization & Performance

Operation LUTs: Slices Clk Freq.
[MHz]

Poly Mult 140,512 : 25,099 74.4

BPGM 1971 : 421 171.0
MGF
B2T 64 : 34 904.0
T2B 64 : 35 984.3
Poly Add 1338 : 272 316.3

Poly Sub 1 1221 : 258 331.2

Poly Sub 2 74 : 64 540.2

PolyMult contributes to over 90% of area and limits clock frequency

22

Source Resources Clk Freq. [MHz] Latency [cycles] Latency [µs]

Parameter set: ees1499ep1

Liu et al., 2016* 83,949 LEs 63.6 867 13.6

This Work 140,512 LUTs 74.4 474 6.4

Speed-up x1.17 x1.83 x 2.14

Parameter set: ees1087ep1

Liu et al., 2016* 60,876 LEs 73.7 638 8.7

This Work 140,512 LUTs 74.4 378 5.1

Speed-up x1.01 x1.69 x 1.70

Comparison with Previous Work
on Implementing Polynomial Multiplication

* B. Liu and H. Wu, “Efficient Multiplication Architecture over Truncated Polynomial
Ring for NTRUEncrypt System,” IEEE International Symposium on Circuits and Systems,
ISCAS 2016. Platform: Altera Cyclone IV EP4CE115F23C7.

23

Profiling of Software Implementation
on Cortex A9 ARM

24

Profiling of Hardware Implementation
on Xilinx Virtex-7

25

Software
•  Poly Mult amounts to about 90% of the total execution time

Hardware
•  Execution time dominated by hash-based

Ø MGF: Mask Generation Function: 44%
Ø  BPGM: Blinding Polynomial Generation Method: 39.5%

•  Poly Mult almost completely overlapped with the computations of
BPGM through the use of pipelining

•  Poly Mult naturally parallelizable
•  Hash function naturally sequential

Hash Function Bottleneck in Hardware

26

Architecture-Level:
•  Unrolled Implementation of SHA-2

Algorithmic-Level (changes in the IEEE & EES standards required):

•  SHA-3 instead of SHA-2
•  Pseudorandom function based on the pipelined AES

Possible Improvements

To Address the Hash Function Bottleneck:

To Address Other Encountered Problems:
Algorithmic-Level (changes in the IEEE & EES standards required):

•  Eliminating (or at least reducing) the dependence of the
execution time on message size

27

Rainbow – Core Functionality (1)

Parameters:
 o1=o2=12 : # of Layer 1/Layer 2 oil variables
 v1=17 : # of Layer 1 vinegar variables
 v2’=1 : # of random Layer 2 vinegar variables
 v2=v1+o1+v2’=30 : # of Layer 2 vinegar variables

 n = v2+o2 = 42 : total # of variables; signature size
 m = o1+o2 = 24 : message size

Basic Operations:
 Solving System of Equations
 Polynomial Multiplication
 with irreducible polynomial x8 + x6 + x3 + x2 + 1
 Polynomial Addition

28

Rainbow – Core Functionality (2)

Public Key:
 Map F’, which consists of o1+o2 multivariate quadratic polynomials of n
 variables

 F’ = L1 ○ F ○ L2

 where “○” denotes composition of two maps,
 F consists of randomly chosen quadratic polynomials of special form
 L1, L2

 are randomly chosen invertible affine transformations

Private Key:
 Used as a trap-door to find a solution to F’(sgn_out) = msg_in
 Consists of maps L1

-1, L2
-1, and F,

 F is the center mapping, with 2 layers,
 It contains multivariate oil-vinegar polynomial sets P1 and P2,

29

Rainbow – Core Functionality (3)

Multivariate Oil-Vinegar Polynomials
Consist of terms of type;

•  vinegar-vinegar (VV), 𝛼ijxixj, where xi, xj are vinegar variables ijxixj, where xi, xj are vinegar variables
•  vinegar-oil (VO), 𝛼ijxixj, where xi is a vinegar, xj is an oil variable ijxixj, where xi is a vinegar, xj is an oil variable
•  vinegar only (V), 𝛽ixi, where xi is a vinegar variable ixi, where xi is a vinegar variable
•  oil only (O), 𝛽ixi, where xi is an oil variable ixi, where xi is an oil variable
•  constant (C), 𝜂

The set of all polynomials of a given Rainbow layer, l, is denoted by Pl.
Furthermore, let an element of Pl, called qk, be made of terms VV, VO, V, O,
and C, corresponding to the types described above.

Since all coefficients 𝛼ij, 𝛽i, and 𝜂 are elements of GF(28) ij, 𝛽i, and 𝜂 are elements of GF(28) i, and 𝜂 are elements of GF(28)
and thus, have a size of 1 byte, therefore we have,

 |qk| = |VV| + |VO| + |V| + |O| + 1

30

Rainbow: Flow Diagram for Signature Generation

Oil-vinegar sets:
 S1 = {x1, ..., xv1} = {x1, ..., x17}
 O1 = {xv1+1, ..., xv1+o1} = {x18, ..., x29}
 S2' = xv2 = x30
 S2 = S1 | O1 | S2’ = {x1, ..., x30}
 O2 = {xv2+1, ..., xn} = {x31, ..., x42}

Oil-vinegar parameters:
 o1 = o2 = 12
 v1 = 17
 v2’ = 1
 v2 = v1 + o1 + v1’ = 30

Affine Transformation parameters:
m = o1 + o2 = 24
l1 = (o1+o2)*(o1+o2+1) = 24*25
 = 600
l2 = n*(n+1) = 42*43 = 1806

Polynomial parameters:
p1 = 4,644
p2 = 10,416

All sizes in bytes

31

Polynomial Evaluation

Rainbow – Flow Diagram for Signature Verification

Signature Verification:

 sgn_in: signature, msg_in: message
 Evaluate F’(sgn_in) = msg_in ?

Polynomial
Evaluation == sgn_in

msg_out
m s m msg_in

fc

F’

is_valid

 fc = 22,704 bytes

32

Block
Diagram

of
System
Solver
E – Elimination

N – Normalization
I – Inversion

~36k LUTs
 ~60 MHz
12 clk cycles

33

Building
Blocks

Ei,j – Elimination
Nj – Normalization

I – Inversion
PivotCalc – Pivot

 Calculation

34

Rainbow Signature Scheme - Results

35

Security Levels:

NTRUEncrypt vs. Rainbow Signature Scheme

NTRU: Parameter sets supporting 112, 128, 192, & 256 bit security levels
Rainbow: Most published parameter sets at 80-90 bit security levels

Key Sizes:

Security
Level

Public Key
Size

Private Key
Size

NTRU 192 1495 B 174 B
256 2062 B 218 B

Rainbow 80 22704 B 17466 B

36

Comparative Analysis of Implementation Difficulties

Feature NTRUEncrypt Rainbow SS
High-security levels Easy to

implement
Challenging to
implement

Key sizes Small Very Large
Support for multiple parameter
sets swapped at run time

Relatively easy to
implement

Challenging to
implement

Component operations Standard: variable
rotator, hash
function

Complex: System
of Linear
Equation Solver

Dependence of the execution time
on message size

Strong Weak

37

•  First hardware implementation of the full NTRUEncrypt-
SVES scheme

•  Hardware optimization for speed revealed the hash
function bottleneck

•  Changes in the NTRUEncrypt standards may be required
to overcome this bottleneck

•  State of the art implementation of the Rainbow Signature
Scheme comparable to the earlier results by Tang et al.
from PQCrypto 2011

•  New PQC Hardware API, paving the way for the fair
evaluation of candidates in the NIST standardization
process

Conclusions

38

•  Constant Time Implementations
•  Extension of the Rainbow implementation to higher

security levels and multiple parameter sets
•  Lightweight Implementations
•  Resistance to Side-Channel Attacks
•  Hardware Benchmarking of Candidates in the NIST

Standardization Effort for the New Public-Key
Post-Quantum Cryptographic Algorithms

•  Possible use of High-Level Synthesis to speed-up the
development and benchmarking process

Future Work

Questions?

Thank you!

39

Questions?

http:/cryptography.gmu.edu

