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•  Quantum Computers could potentially break all current 
American federal standards in the area of public-key cryptography 
(RSA, ECC, Diffie-Hellman) 

•  Increasing key sizes would be futile 
•  Public key cryptographic families presumed resistant against 

quantum computing cryptanalysis collectively referred to as  
Post-Quantum Cryptography (PQC) 

•  PQC algorithms capable of  
•  being implemented using any traditional methods, including 

software and hardware 
•  running efficiently on any modern computing platforms: PCs, 

tablets, smartphones, servers with hardware accelerators, etc. 

 

Post-Quantum Cryptography 
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•  New public-key cryptographic families: mid-1990s-present 
•  Series of PQCrypto Conferences: 2006-present 
•  NIST Workshop on Cybersecurity in a Post-Quantum World 2015 
•  NIST announcement of standardization plans at PQCrypto 2016: 

Feb. 2016 
•  NIST Call for Proposals and Request for Nominations for Public-Key 

Post-Quantum Cryptographic Algorithms: Dec. 2016 
             Deadline for submitting candidates: November 30, 2017 
•  Time of Standard Development + Time of Standard Deployment  

                                + Max. Protection Time  
                                  must be smaller than  
           Time to Develop Sufficiently Large Quantum Computer 

Post-Quantum Cryptography Efforts 
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Promising PQC Families 

Family Encryption Signature Key Agreement 

Hash-based XX 

Code-based XX X 

Lattice-based XX X 

Multivariate X XX 

Supersingular  
Elliptic Curve 
Isogeny 

XX 

XX – high-confidence candidates,   X – medium-confidence candidates  



6 

Paving the way for the future comprehensive, fair, and efficient 
hardware benchmarking of PQC candidates through 

1.  Uniform Hardware API 
2.  Uniform & Efficient Development Process based on 

a.  detailed flow diagrams 
b.   choice of supported parameter sets 
c.  top-level & lower-level block diagrams 
d.   cycle-based timing analysis 
e.  Algorithmic State Machine (ASM) charts 
f.   Register-Transfer Level (RTL) code 
g.   software-generated test vectors  
h.   comprehensive testbenches  
i.   results of synthesis and implementation 
j.   analysis of results & lessons learned 

 

Our Objectives 
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Minimum Compliance Criteria 
•  Encryption & decryption, or 
      Signature generation & verification 
•  External key generation (e.g., in software) 
•  Permitted data port widths, etc. 

Communication Protocol 

Interface Timing Characteristics 

Proposed Uniform Hardware API  
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1.  NTRUEncrypt Short Vector Encryption Scheme (SVES) 
                               fully compliant with  

IEEE 1363.1 Standard Specification for Public Key Cryptographic 
Techniques Based on Hard Problems over Lattices 

Parameter sets:    
•  Optimized for speed 
•  192-bit security: ees1087ep1: p=3, q=2048, N=1087, df=dr=63 
•  256-bit security: ees1499ep1: p=3, q=2048, N=1499, df=dr=79 

 
2.  Multivariate Rainbow Signature Scheme 

Parameter set:    
•  (17,12)(1,12) 
•  80-bit security level 

 
 

Algorithms Selected for a Pilot Study 
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•  IEEE 1363.1 Standard Specification for Public Key Cryptographic 
Techniques Based on Hard Problems over Lattices, 2009 

•  Financial Services Industry’s Accredited Standards Committee X9, 
ANSI X9.98-2010, Lattice-Based Polynomial Public Key Establishment 
Algorithm for the Financial Services Industry, 2010 

•  Consortium for Efficient Embedded Security, Efficient Embedded 
Security Standards (EESS), EESS #1: Implementation Aspects of 
NTRUEncrypt, 2015 

•  J. Schanck, W. Whyte, Z. Zhang, “Quantum-Safe Hybrid (QSH) 
Ciphersuite for Transport Layer Security (TLS) version 1.3,”  
TLS Working Group Internet Draft, Oct. 2016 (work in progress) 

 

NTRUEncrypt Standards 
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•  Optimization for speed 
•  Minimum Latency 
•  Maximum Number of Operations per Second 

•  Application: high-end servers supporting a very large 
number of TLS, IPSec, and other protocol transactions 

•  Key generation performed externally, e.g., in software 
•  No countermeasures against side-channel attacks 
•  Full Compliance with Existing Standards (if available) 

Implementation Assumptions 
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NTRUEncrypt – Core Functionality (1) 

Parameters: 
     N – prime 
     p – small prime, typically 3 
     q – power of 2, typically 2048 
 
Basic Operations: 
      Polynomial Multiplication, Addition, Subtraction in the ring Z/qZ[X]/XN-1  
 
Private Key: 
     f = 1+pF, where F – random polynomial with small coefficients {-1, 0, 1} 
 
Public Key: 
     h = f-1 * g � p, and  
           g – random polynomial with small coefficients {-1, 0, 1} 
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NTRUEncrypt – Core Functionality (2) 

Encryption: 
                                  e = r * h + m   (mod q) 
      where r is a random polynomial with small coefficients 
 
Decryption: 
 
1) calculate f ∗ e (mod q) 
2) shift coefficients of the obtained polynomial to the range [−q/2, q/2), 
3) reduce the obtained coefficients mod p 
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NTRUEncrypt – Flow Diagram for Encryption 
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NTRUEncrypt – Flow Diagram for Decryption 
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NTRUEncrypt: Supported Parameter Sets 
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NTRUEncrypt – Top-Level Block Diagram IDCU –  
Input  
Data  

Conversion  
Unit 

ODCU –  
Output  
Data  

Conversion  
Unit 

DFU – Data  
Formatting Unit 

Top-Level  
Block Diagram 

SIPO – Serial In Parallel Out 

PISO – Parallel In Serial Out 
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Block Diagram of Polynomial Multiplier 
Enc: Public Key, h 
Dec: Ciphertext, e 

Dec: Ciphertext, e 

Enc: R=r*h 
Dec: f*e 

Enc: Random Polynomial, r 
Dec: Private Key, f 

Execution Time: 
Enc: 3*dr 
Dec: 3*df 
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Block Diagram of Blinding Polynomial Generation 
Method / Mask Generation Function 

BWC – Bit Width Conversion 

O2T – Octets to Ternary Digits 

PISO – Parallel In Serial Out 

Implementation of SHA-2 
modified to share  
computations for  
hashing of strings 

starting from the same  
common substring 
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Sharing Computations for Multiple Overlapping Inputs 

Case 1:  t+n-1 input blocks 
h(sData||C1)=h(sData_0, …, sData_t-1, sData_t||C1) 
h(sData||C2)=h(sData_0, …, sData_t-1,  sData_t||C2) 
h(sData||C3)=h(sData_0, …, sData_t-1,  sData_t||C3) 
…… 
h(sData||Cn)=h(sData_0, …, sData_t-1,  sData_t||Cn) 

Case 2: t+2(n-1) input blocks 
h(sData||C1)=h(sData_0, …, sData_t-1, sData_t||C1_0, C1_1) 
h(sData||C2)=h(sData_0, …, sData_t-1, sData_t||C2_0, C2_1) 
h(sData||C3)=h(sData_0, …, sData_t-1, sData_t||C3_0, C3_1) 
…… 
h(sData||Cn)=h(sData_0, …, sData_t-1, sData_t||Cn_0, Cn_1) 
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Implementation Platforms 

Hardware: 

FPGA Family:  Xilinx Kintex-7 UltraSCALE 
Device:            XCKU035-FFVA1156 
Technology:   20nm CMOS 

Software: 

Cortex A9 ARM Core of Zynq 7020 
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Major Component Operations 
Resource Utilization & Performance 

Operation LUTs: Slices Clk Freq. 
[MHz] 

Poly Mult     140,512 : 25,099  74.4 

BPGM          1971 : 421  171.0 
MGF 
B2T              64 : 34 904.0 
T2B              64 : 35 984.3 
Poly Add          1338 : 272 316.3 

Poly Sub 1          1221 : 258 331.2 

Poly Sub 2              74 : 64 540.2 

PolyMult contributes to over 90% of area and limits clock frequency 
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Source Resources Clk Freq. [MHz] Latency [cycles] Latency [µs] 

Parameter set: ees1499ep1 

Liu et al., 2016* 83,949 LEs 63.6 867 13.6 

This Work 140,512 LUTs 74.4 474 6.4 

Speed-up x1.17 x1.83 x 2.14 

Parameter set: ees1087ep1 

Liu et al., 2016* 60,876 LEs 73.7 638 8.7 

This Work    140,512 LUTs 74.4 378 5.1 

Speed-up x1.01 x1.69 x 1.70 

Comparison with Previous Work 
on Implementing Polynomial Multiplication 

* B. Liu and H. Wu, “Efficient Multiplication Architecture over Truncated Polynomial  
Ring for NTRUEncrypt System,” IEEE International Symposium on Circuits and Systems,  
ISCAS 2016. Platform: Altera Cyclone IV EP4CE115F23C7. 
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Profiling of Software Implementation 
on Cortex A9 ARM 
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Profiling of Hardware Implementation 
on Xilinx Virtex-7 
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Software 
•  Poly Mult amounts to about 90% of the total execution time 

Hardware 
•  Execution time dominated by hash-based  

Ø MGF: Mask Generation Function:      44% 
Ø  BPGM: Blinding Polynomial Generation Method:   39.5% 

•  Poly Mult almost completely overlapped with the computations of 
BPGM through the use of pipelining 

•  Poly Mult naturally parallelizable 
•  Hash function naturally sequential 

 

Hash Function Bottleneck in Hardware 
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Architecture-Level: 
•  Unrolled Implementation of SHA-2 

Algorithmic-Level (changes in the IEEE & EES standards required): 

•  SHA-3 instead of SHA-2 
•  Pseudorandom function based on the pipelined AES 

 

Possible Improvements 

To Address the Hash Function Bottleneck: 

To Address Other Encountered Problems: 
Algorithmic-Level (changes in the IEEE & EES standards required): 

•  Eliminating (or at least reducing) the dependence of the 
execution time on message size 

 



27 

Rainbow – Core Functionality (1) 

Parameters: 
     o1=o2=12   :  # of Layer 1/Layer 2 oil variables 
     v1=17   :  # of Layer 1 vinegar variables 
     v2’=1   :  # of random Layer 2 vinegar variables 
     v2=v1+o1+v2’=30 : # of Layer 2 vinegar variables 
 
     n = v2+o2 = 42  : total # of variables; signature size 
     m = o1+o2 = 24  : message size         
 
Basic Operations: 
      Solving System of Equations 
      Polynomial Multiplication  
          with irreducible polynomial x8 + x6 + x3 + x2 + 1 
      Polynomial Addition 
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Rainbow – Core Functionality (2) 

Public Key: 
    Map F’, which consists of o1+o2 multivariate quadratic polynomials of n 
    variables 
 
    F’ = L1 ○ F ○ L2

 

    where “○” denotes composition of two maps, 
    F consists of randomly chosen quadratic polynomials of special form 
    L1, L2

  are randomly chosen invertible affine transformations 
 
Private Key: 
     Used as a trap-door to find a solution to F’(sgn_out) = msg_in  
     Consists of maps L1

-1, L2
-1, and F,     

     F is the center mapping, with 2 layers,  
     It contains multivariate oil-vinegar polynomial sets P1 and P2,          
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Rainbow – Core Functionality (3) 

Multivariate Oil-Vinegar Polynomials 
Consist of terms of type; 

•  vinegar-vinegar (VV), 𝛼ijxixj, where xi, xj are vinegar variables ijxixj, where xi, xj are vinegar variables 
•  vinegar-oil (VO), 𝛼ijxixj, where xi is a vinegar, xj is an oil variable ijxixj, where xi is a vinegar, xj is an oil variable 
•  vinegar only (V), 𝛽ixi, where xi is a vinegar variable ixi, where xi is a vinegar variable 
•  oil only (O), 𝛽ixi, where xi is an oil variable ixi, where xi is an oil variable 
•  constant (C), 𝜂 

 
The set of all polynomials of a given Rainbow layer, l, is denoted by Pl.  
Furthermore, let an element of Pl, called qk, be made of terms VV, VO, V, O, 
and C, corresponding to the types described above. 
 

Since all coefficients 𝛼ij, 𝛽i, and 𝜂 are elements of GF(28)  ij, 𝛽i, and 𝜂 are elements of GF(28)  i, and 𝜂 are elements of GF(28)  
and thus, have a size of 1 byte, therefore we have, 

                                    |qk| = |VV| + |VO| + |V| + |O| + 1 
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Rainbow: Flow Diagram for Signature Generation 

Oil-vinegar sets: 
 S1 = {x1, ..., xv1} = {x1, ..., x17} 
 O1 = {xv1+1, ..., xv1+o1} = {x18, ..., x29} 
 S2' = xv2 = x30 
 S2 = S1 | O1 | S2’ = {x1, ..., x30} 
 O2 = {xv2+1, ..., xn} = {x31, ..., x42} 
 
Oil-vinegar parameters: 
 o1 = o2 = 12 
 v1 = 17 
 v2’ = 1 
 v2 = v1 + o1 + v1’ = 30 
 
Affine Transformation parameters: 
m = o1 + o2 = 24 
l1 = (o1+o2)*(o1+o2+1) = 24*25  
    =  600  
l2 = n*(n+1) = 42*43 = 1806 
 
Polynomial parameters: 
p1 = 4,644 
p2 = 10,416 

All sizes in bytes 
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Polynomial Evaluation 

Rainbow – Flow Diagram for Signature Verification 

Signature Verification: 
 
                              sgn_in: signature, msg_in: message 
                                    Evaluate F’(sgn_in) = msg_in ? 

Polynomial 
Evaluation == sgn_in 

msg_out 
m s m msg_in 

fc 

F’ 

is_valid 

 fc = 22,704 bytes 
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Block  
Diagram 

of 
System 
Solver 
E – Elimination 

N – Normalization 
I – Inversion 

~36k LUTs 
  ~60 MHz 
12 clk cycles  
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Building 
Blocks 

Ei,j – Elimination 
Nj – Normalization 

I – Inversion 
PivotCalc – Pivot 

 Calculation 
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Rainbow Signature Scheme - Results 
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Security Levels: 

NTRUEncrypt vs. Rainbow Signature Scheme 

NTRU:  Parameter sets supporting 112, 128, 192, & 256 bit security levels 
Rainbow:  Most published parameter sets at 80-90 bit security levels 

Key Sizes: 

Security  
Level 

Public Key  
Size 

Private Key 
Size 

NTRU 192 1495 B 174 B 
256 2062 B 218 B 

Rainbow 80 22704 B 17466 B 
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Comparative Analysis of Implementation Difficulties 

Feature NTRUEncrypt Rainbow SS 
High-security levels Easy to  

implement 
Challenging to 
implement 

Key sizes Small Very Large 
Support for multiple parameter 
sets swapped at run time 

Relatively easy to 
implement 

Challenging to 
implement 

Component operations Standard: variable 
rotator, hash 
function 

Complex: System 
of Linear 
Equation Solver 

Dependence of the execution time 
on message size 

Strong Weak 
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•  First hardware implementation of the full NTRUEncrypt-
SVES scheme 

•  Hardware optimization for speed revealed the hash 
function bottleneck 

•  Changes in the NTRUEncrypt standards may be required 
to overcome this bottleneck 

•  State of the art implementation of the Rainbow Signature 
Scheme comparable to the earlier results by Tang et al. 
from PQCrypto 2011 

•  New PQC Hardware API, paving the way for the fair 
evaluation of candidates in the NIST standardization 
process 

Conclusions 
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•  Constant Time Implementations 
•  Extension of the Rainbow implementation to higher 

security levels and multiple parameter sets 
•  Lightweight Implementations 
•  Resistance to Side-Channel Attacks 
•  Hardware Benchmarking of Candidates in the NIST 

Standardization Effort for the New Public-Key  
Post-Quantum Cryptographic Algorithms 

•  Possible use of High-Level Synthesis to speed-up the 
development and benchmarking process 

 

Future Work 



Questions? 

Thank you! 
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Questions? 

http:/cryptography.gmu.edu  


