
1	

	

Toward	
 a	
 Universal	
 High-­‐Speed	

Interface	
 for	
 Authen;cated	
 Ciphers	

Ekawat	
 Homsirikamol,	
 	

William	
 Diehl,	
 Ahmed	
 Ferozpuri,	

Farnoud	
 Farahmand,	
 	

Malik	
 Umar	
 Sharif,	
 and	
 Kris	
 Gaj	

George	
 Mason	
 University	

USA	

http:/cryptography.gmu.edu
https://cryptography.gmu.edu/athena

2

Goal: Portfolio of new-generation authenticated ciphers

Period: March 2014 - December 2017 (tentative)
Organizer: An informal committee of leading cryptographic

 experts

Number of submitted candidates: 57

Upcoming milestones:
 - Announcement of second-round candidates
 - Round 2 tweaks
 - VHDL/Verilog codes

CAESAR Competition

3

•  Software implementations compared using a uniform API, using the
SUPERCOP software and eBACS framework

•  Hardware API can have a high influence on Area and
Throughput/Area ratio of all candidates

•  Hardware API typically much more difficult to modify than Software API

•  No comprehensive hardware API proposed to date

•  Comparison of existing and future codes highly unreliable and
potentially unfair

•  Need for a uniform hardware API, endorsed by the CAESAR Committee,
and adopted by all future implementers

Motivation

4

•  inputs of arbitrary size in bytes (but a multiple of a byte only)
•  size of the entire message/ciphertext does not need to be

known before the encryption/decryption starts (unless
required by the algorithm itself)

•  wide range of data port widths, 8 ≤ w ≤ 256
•  independent data and key inputs
•  simple high-level communication protocol
•  support for the burst mode
•  possible overlap among processing the current input block,

reading the next input block, and storing the previous output
block

Proposed Features (1)

5

•  storing decrypted messages internally, until the result of
authentication is known

•  support for encryption and decryption within the same core,
but only one of these two operations performed at a time

•  ability to communicate with very simple, passive devices,
such as FIFOs

•  ease of extension to support existing communication
interfaces and protocols, such as
•  AMBA-AXI4 - a de-facto standard for the Systems-on-Chip buses
•  PCI Express – high-bandwidth serial communication between PCs

and hardware accelerator boards

Proposed Features (2)

6

•  Popular general-purpose interfaces
•  ARM: AXI4, AXI4-Lite, AXI4-Stream (Advanced eXtensible Interface)
•  IBM: PLB (Processor Local Bus), OPB (On-chip Peripheral Bus)
•  Altera: Avalon
•  Xilinx: FSL (Fast Simplex Link)
•  Silicore Corp.: Wishbone (used by opencores.org)

•  Interfaces used during the SHA-3 Contest
•  GMU, Virginia Tech, University College Cork, etc.

•  Interfaces used so far in the CAESAR competition
•  minimalistic, candidate specific
•  AXI4-Stream proposed by ETH (non-uniform control ports,
 algorithm specific, no description of i/o data formats)

Previous Work

7

ETH Interface Conventions

ICEPOLE Tiaoxin-346

8

AEAD Interface

w	

AEAD	

pdi	
 do	

pdi_valid	

pdi_ready	
 do_ready	

do_valid	

clk	
 rst	

clk	
 rst	

w	

w	

sdi	

sdi_valid	

sdi_ready	

PDI	

Public	
 Data	
 Input	

Ports	

SDI	

Secret	
 Data	
 Input	

Ports	

DO	

Data	
 Output	

Ports	

9

Typical External Circuits (1) – AXI4 IPs

w	

AEAD	

pdi	
 do	

pdi_valid	

pdi_ready	
 do_ready	

do_valid	

clk	
 rst	

clk	
 rst	

w	

sdi	

sdi_valid	

sdi_ready	

empty	

read	

w	

SDI	

FIFO	

clk	
 rst	

dout	

AXI4-­‐Stream	

Master	

m_axis_tvalid	

m_axis_tdata	

m_axis_tready	

s_axis_tvalid	

s_axis_tdata	

s_axis_tready	

AXI4-­‐Stream	

Slave	

clk	
 rst	
 clk	
 rst	

10

Typical External Circuits (2) - FIFOs

AEAD	

pdi	
 do	

pdi_valid	

pdi_ready	
 do_ready	

do_valid	

clk	
 rst	

clk	
 rst	

sdi	

sdi_valid	

sdi_ready	

empty	

read	

w	

SDI	

FIFO	

dout	

wr_clk	

	
 	
 =	
 clk	
 rst	

empty	

read	

w	

PDI	

FIFO	

dout	

rd_clk	
 wr_clk	
 rst	
 rd_clk	

=	
 clk	

wr_clk	
 rst	
 rd_clk	

=	
 clk	

DO	

FIFO	

full	

write	

din	

DO	

FIFO	

11

Input and Output of an Authenticated Cipher

Message	

Tag	

Encryp;on	

Npub	

Ciphertext	
 Npub	

Tag	
 Ciphertext	
 Npub	

Decryp;on	

K	
 -­‐	
 Secret	
 key	

Npub	
 (Public	
 Message	
 Number),	
 typically	
 Nonce	

Nsec	
 (Secret	
 Message	
 Number)	
 	
 [supported	
 by	
 few	
 algorithms]	

AD	
 –	
 Associated	
 Data	

AD	

AD	

AD	

Message	
 AD	

K	

Invalid	

or	

Nsec	
 K	
 Nsec	

12

Format of Secret Data Input

.	

.	

.	

	

seg_0_header

seg_0 = Key

w bits

instruction

seg_1_header

seg_1 = Nsec

13

Format of Public Data Input

.	

.	

.	

	

seg_0_header

seg_0 = Npub

seg_1 = AD

seg_2_header

seg_2 = Message

w bits

instruction

seg_1_header

OR
.	

.	

.	

	

seg_0_header

seg_0 = Npub

seg_1 = AD_0

seg_2_header

seg_3 = Message_0

w bits

instruction

seg_1_header

seg_2 = AD_1

seg_3_header

seg_4_header

seg_4 = Message_1
Single segment or multiple segments
 per data type (AD and/or Message)

14

Instruction Format

MSB

Msg ID Opcode

4 4

Opcode:
0000 – Reserved
0001 – Reserved
0010 – Authenticated Encryption
0011 – Authenticated Decryption
0100 – Load Key
0101 – Activate Key

0000 Key ID

8

LSB

8

Divided into 24/w words, starting from MSB.

15

Segment Header Format

MSB

Msg ID Seg Len

8

LSB

8

Divided into (16+s)/w words, starting from MSB.

Info

s

000…0

w-(16+s) mod w

4

Segment
Type

EOT

1 - 1

1 1 1

EOI

Info Segment Type:

0000 – Reserved
0001 – Npub
0010 – AD
0011 – Message
0100 – Ciphertext
0101 – Tag
0110 – Key
1000 – Nsec

EOI = 1 if the last
segment of input

0 otherwise

EOT = 1 if the last
segment of its type

(AD, Message, Ciphertext),
0 otherwise

-

16

•  Universal Testbench supporting any authenticated cipher
core following GMU AEAD API

•  Change of cipher requires only changing test vector file
•  A Python script created to automatically generate test

vector files representing multiple test cases
•  Encryption and Decryption
•  Empty Associated Data and/or Empty Message/Ciphertext
•  Various, randomly selected sizes of AD and Message/Ciphertext
•  Valid tag and invalid tag cases

•  All source codes made available at GMU ATHENa website

Universal Testbench & Automated Test Vector
Generation

17

PreProcessor:
•  parsing segment headers
•  loading and activating keys
•  Serial-In-Parallel-Out loading of input blocks
•  padding input blocks
•  keeping track of the number of data bytes left to process

PostProcessor:
•  clearing any portions of output blocks not belonging to ciphertext

or plaintext
•  Parallel-In-Serial-Out conversion of output blocks into words
•  formatting output words into segments
•  storing decrypted messages in AUX FIFO, until the result of

authentication is known
•  generating an error word if authentication fails

PreProcessor and PostProcessor for
High-Speed Implementations (1)

18

Features:
•  Ease of use
•  No influence on the maximum clock frequency of AEAD

(up to 300 MHz in Virtex 7)
•  Limited area overhead
•  Clear separation between the core unit and internal FIFOs

•  Bypass FIFO – for passing headers and associated data directly to
PostProcessor

•  AUX FIFO – for temporarily storing unauthenticated messages after decryption

Benefits:
•  The designers can focus on designing the CipherCore specific to a

given algorithm, without worrying about the functionality common
for multiple algorithms

•  Full-block width interface of the CipherCore

PreProcessor and PostProcessor for
High-Speed Implementations (2)

19

Block Diagram of AEAD

20

Test of Compatibility with AXI4 IP Cores

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel

Correct operation verified and performance measured experimentally using
the ZedBoard based on Xilinx ZYNQ XC7Z020 All Programmable SoC

21

•  Additional support provided for designers of Cipher Cores
of CAESAR candidates based on AES and Keccak

•  Fully verified VHDL codes, block diagrams, and
ASM charts of
•  AES
•  Keccak-F Permutation

•  All resources made available at the GMU ATHENa website
 https://cryptography.gmu.edu/athena

AES & Keccak-F Permutation VHDL Codes

22

•  Generation of results possible for
•  CipherCore – full block width interface, incomplete functionality
•  AEAD Core - recommended
•  AEAD – difficulty with setting BRAM usage to 0 (if desired)

•  Use of wrappers
•  Out-of-context (OOC) mode available in Xilinx Vivado (no pin limit)
•  Generic wrappers available in case the number of port bits exceeds

the total number of user pins, when using Xilinx ISE
•  GMU Wrappers: 5 ports only (clk, rst, sin, sout, piso_mux_sel)

•  Recommended Optimization Procedure
•  ATHENa for Xilinx ISE and Altera Quartus II
•  26 default optimization strategies for Xilinx Vivado

Generation of Results

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel

23

AEAD Core vs. CipherCore Area Overhead

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel

Overhead =
LUT(AEAD_Core)-LUT(CipherCore)

LUT(AEAD_Core)
× 100%

24

•  Available at
 http://cryptography.gmu.edu/athena

•  Developed by John Pham, a Master’s-level student of
Jens-Peter Kaps

•  Results can be entered by designers themselves.
If you would like to do that, please contact me regarding
an account.

•  The ATHENa Option Optimization Tool supports automatic
generation of results suitable for uploading to the database

ATHENa Database of Results for Authenticated Ciphers

25

Ranking View (1)

26

Ranking View (2)

27

Database of Results

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel

Ranking View:
Supports the choice of
 I. Hardware API (e.g., GMU_AEAD_Core_API_v1, GMU_AEAD_API_v1,

GMU_CipherCore_API_v1)
 II. Family (e.g., Virtex 6 (default), Virtex 7, Zynq 7000)
 III. Operation (Authenticated Encryption (default), Authenticated

Decryption, Authentication Only)
 IV. Unit of Area (for Xilinx FPGAs: LUTs vs. Slices)
 V. Ranking criteria (Throughput/Area (default), Throughput, Area)

Table View:
•  more flexibility in terms of filtering, reviewing, ranking, searching

for, and comparing results with one another

28

Conclusions

clk, rst, sin, sout, piso_mux_sel clk, rst, sin, sout, piso_mux_sel

•  Complete Hardware API for authenticated ciphers developed,
including

•  Interface
•  Communication Protocol

•  Design with the GMU hardware API facilitated by
•  Detailed specification
•  Universal testbench and Automated Test Vector Generation
•  PreProcessor and PostProcessor Units for high-speed implementations
•  Universal wrappers for generating results
•  AES and Keccak-F Permutation source codes
•  Ease of recording and comparing results using ATHENa database
•  Full example of use in Zynq 7000 based on Xilinx AXI4 IPs

•  GMU proposal open for discussion and possible improvements through
•  Better specification
•  Better implementation of supporting codes

29

•  formatting errors detection and reporting
•  support for two-pass algorithms
•  accepting inputs with padding done in software
•  accepting inputs with key scheduling done in software
•  support for multiple streams of data

Possible Extensions of the Current Hardware API

Comments?

Thank you!

30

Questions?

http:/cryptography.gmu.edu
https://cryptography.gmu.edu/athena

Suggestions?

