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ATHENa – Automated Tool for Hardware 
EvaluatioN 
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Open-source benchmarking environment,  
written in Perl, aimed at 

 AUTOMATED generation of  
OPTIMIZED results for  
MULTIPLE  hardware platforms. 

The most recent version 
0.6.3 released in May 2012. 

http://cryptography.gmu.edu/athena 
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•  6 algorithms (BLAKE, Groestl, JH, Keccak, Skein, SHA-2) 
•  2 variants (with a 256-bit and a 512-bit output) 
•  7 to 12 different architectures per algorithm 
•  4 modern FPGA families (Virtex 5, Virtex 6, Stratix III,  

Stratix IV)  
 
 
 

Benchmarking of the SHA-3 Finalists as a Test Case 

Total:      ~ 120 designs 
                ~ 600+ results 
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SHA-3 Performance Graphs (256-bit variants) 

Virtex 5 

Best single-message architectures Best overall architectures 
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Throughput vs. Area Trade-offs in Virtex 5 
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Best Single-Message Architectures 
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Best Overall Architectures 
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•  batch mode of FPGA tools 

•  automated choice of tool options 

•  ease of extraction and tabulation of results (Excel, CSV) 

•  close integration with the database of results 

Generation of Results Facilitated by ATHENa 

vs. 
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ATHENa Database of Results 
http://cryptography.gmu.edu/athenadb   
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•  Parallel Execution on Multiple Computers 
•  Utilize idle resources 
•  Increase throughput of benchmarking tasks 
•  Decrease benchmarking time 

•  Usability 
•  GUI 
•  Monitoring and control 
•  Benchmark configuration 

•  Optimization Space Exploration 
•  Search more options 
•  Decrease search time 
•  Increase optimization end-performance 

 

Major Improvements To Be Introduced in ATHENa 2.0 
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•  Modular, Extensible, and Maintainable 
•  Python in place of Perl 
•  Object-Oriented Design Principles 
•  Client/Server Architecture 
•  Ease of adding and removing functionality 

 

Other Improvements Introduced in ATHENa 2.0 
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•  Candidates 
•  Condor – Workload Management System 
•  Globus – Meta Scheduler for grid computing 
•  Torque – Resource manager, based on PBS (Portable Batch System) 
•  MAUI – Scheduler for use with Torque 
•  JPPF – Java Parallel Processing Framework 
•  SLURM – Simple Linux Utility for Resource Management 

•  Evaluation Criteria 
•  Flexibility 
•  Cross platform 
•  Easy to use and administer 
•  Reliable 
•  No language restrictions 
•  Security 
•  Fault Tolerance 

 

Parallel Execution on Multiple Computers:  
Choice of the Most Suitable Batch System  
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•  Condor 
•  Workload Management System 
•  Developed at the University of Wisconsin-Madison 
•  Provides a job queuing mechanism, scheduling policy, priority scheme, resource 

monitoring, and resource management 
•  Supports heterogeneous computing resources 
•  Actively supported and widely used 
•  More details at http://research.cs.wisc.edu/condor/  

 

 

Selected Batch System 
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Usability:  
Graphical User Interface 

 Who	
  owns/submi/ed	
  
	
  the	
  job	
  

Job	
  Priority	
  (0	
  is	
  default)	
  Job	
  status:	
  Idle/Running	
  	
  
Idle	
  means	
  the	
  job	
  was	
  paused	
  	
  
or	
  is	
  waiCng	
  its	
  turn	
  for	
  execuCon	
  	
  

Job	
  ID	
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•  Use algorithms inspired by previous research on the programming-
language compilers 
•  Least Effort − LE 
•  Most Effort − ME 
•  Batch Elimination − BE 
•  Iterative Elimination − IE 
•  Orthogonal Arrays − OA 

•  Optimize FPGA-specific algorithms introduced in current ATHENa 
•  Frequency Search − FS 
•  Placement Search − PS 

Optimization Space Exploration: 
Our Approach 
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•  Least Effort − minimum execution time, worst results 
•  Lazy or Naïve optimization 

•  Set all options to the perceived high state 
•  Only works well with binary options 
•  Requires judgment on what is “high” 

•  Used as a baseline 
•  Minimum amount of work needed to optimize 
•  Almost never optimal  

•  Most Effort − maximum execution time, best results 
•  Also known as Exhaustive Search 
•  Guarantee optimal result 
•  Least time-efficient 
•  Impractical for more than a handful of options 
•  Number of runs needed:  2n, where n is the number of options 

Least Effort & Most Effort 
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Batch Elimination 

Run 
 

Option 
1 

Option 
2 

Option 
3 

Option 
4 

Option 
5 

Improvement 
Relative to 

Base Options 
Ob 0 0 0 0 0 N/A 
O1 1 0 0 0 0 + 
O2 0 1 0 0 0 − 
O3 0 0 1 0 0 − 
O4 0 0 0 1 0 + 
O5 0 0 0 0 1 + 
Of 1 0 0 1 1 N/A 

Ob − Base options (all options off) 
Oi − Option i on, i=1..n 
Of  − Final options 

Number of runs:             n+2 
Number of run levels:      2 
 
Based on:  Z. Pan and R. Eigenmann, “Fast and Effective  Orchestration of 
Compiler Optimizations for Automatic Performance Tuning,” 
Proc. International Symposium on Code Generation and Optimization, CGO 2006. 
 
Potential disadvantage:   The  interaction between options is not tested 
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Iterative Elimination 

Run Option 1 Option 2 Option 3 Option 4 Option 5 
Improvement 

Relative to 
Current Base 

Ob 0 0 0 0 0 N/A 
O1 1 0 0 0 0 +5 

O2 0 1 0 0 0 − 

O3 0 0 1 0 0 − 

O4 0 0 0 1 0 +7 

O5 0 0 0 0 1 +2 

Ob2=O4 0 0 0 1 0 
+7 from 

baseline 1 
O1’ 1 0 0 1 0 +3 
O2’ 0 1 0 1 0 − 
O3’ 0 0 1 1 0 − 
O5’ 0 0 0 1 1 +1 

0b3=O1’ 1 0 0 1 0 
+3 from 

baseline 2 
O2” 1 1 0 1 0 − 

O3” 1 0 1 1 0 − 

O5” 1 0 0 1 1 − 
Of 1 0 0 1 0 +10 total 
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Iterative Elimination 

Ob − Base options at the start (all options off) 
Obj − Base options at level j 
Oi   − Option i on  
Of  − Final options 

Maximum number of runs:             (n+1)(n/2)   (can be as few as n+1) 
Maximum number of run levels:            n          (can be as few as 1) 
 
Based on:  Z. Pan and R. Eigenmann, “Fast and Effective  Orchestration of 
Compiler Optimizations for Automatic Performance Tuning,” 
Proc. International Symposium on Code Generation and Optimization, CGO 2006. 
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Orthogonal Arrays 

n Options 

 k 
 E

xp
er

im
en

ts 

•  k x n matrix where the columns 
represent optimization options and 
the rows represent the settings used 
for each experiment 

•  The matrix is filled with 1’s and 0’s to  
     represent whether or not a specified  
     option is on or off 
•   Any two arbitrary columns contain  
      the patterns: {00, 01, 10, 11}  
      equally often 
•  The algorithm guarantees that half of the experiments  
     will be conducted with an option Oi on and half with option Oi off 
•  For arbitrary two options Oi and Oj there are exactly k/4 experiments 
     per each possible setting of these two options 
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Orthogonal Arrays 

Number of runs:                                    k+1 
Number of run levels:                             2 
 
Based on:  R.P.J. Pinkers, P.M.W Knijnenburg, M. Haneda, and H.A.G. Wijshoff, 
“Statistical Selection of Compiler Options,” 12th Annual International Symposium 
on Modeling, Analysis, and Simulation of Computer and Telecommunication 
Systems, 2004. 

Run 
Option 

1 
Option 

2 
Option 

3 
Option 

4 
Option 

5 
O1 1 0 0 0 0 
O2 0 1 0 1 0 
O3 1 1 1 0 1 
O4 0 0 1 1 1 
O5 1 0 0 0 1 
O6 0 1 0 1 1 
O7 1 1 1 0 0 
O8 0 0 1 1 0 

RIP(Oi) + + − − + 
Of 1 1 0 0 + 

RIP(Oi ) =
P(Oi =1)−∑ P(Oi = 0)∑

P(Oi = 0)∑
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Experiments 

•  Codes: 4 SHA-3 candidate algorithms: BLAKE, JH, Keccak, and Skein 
•  FPGA families: Spartan 3 and Virtex 6 
•  Version of tools: Xilinx ISE v.13.1  
•  Hosts: Two eight core Linux workstations = total of 16 execute hosts 
•  Optimization Target:  Throughput/Area Ratio 

•  Experiment 1 
•  Determine ability of Batch Elimination, Iterative Elimination and 

Orthogonal Array to achieve optimal results 
•  Limited search to 5 options 
•  Used Least Effort and Most Effort as basis for comparisons 

•  Experiment 2 
•  Determine the ability of algorithms to fully optimize a design 
•  Used expanded 9 option set and optimization algorithm chaining 
•  Used results generated with current ATHENa as basis for comparison 
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Results of Experiment 1 

BE IE OA 
JH 5.3 16.0 15.5 
BLAKE 7.9 33.0 -3.0 
Skein 3.3 5.9 -1.9 
Keccak -1.3 10.8 8.5 

Average %inc 3.8 16.4 4.7 

Median %inc 4.3 13.4 3.2 

Spartan	
  3:	
  Below	
  Most	
  Effort	
  (%)	
  Spartan	
  3:	
  Above	
  Least	
  Effort	
  (%)	
  

BE IE OA 
JH 8.6 13.5 13.5 
BLAKE 26.4 36.4 26.5 
Skein -2.6 9.4 7.2 
Keccak -2.6 1.1 -3.7 
Average %inc 7.5 15.1 10.9 
Median %inc 3.0 11.4 10.3 

Virtex	
  6:	
  Below	
  Most	
  Effort	
  (%)	
  	
  Virtex	
  6:	
  Above	
  Least	
  Effort	
  (%)	
  

BE IE OA 
JH -9.8 -0.7 -1.1 
BLAKE -18.9 0 -27.1 
Skein -12.8 -10.6 -17.1 
Keccak -10.9 0 -2.1 
Average %inc -13.1 -2.8 -11.9 
Median %inc -11.8 -0.3 -9.6 

BE IE OA 
JH -4.3 0 0 
BLAKE -7.3 0 -7.3 
Skein -11.0 0 -2.0 
Keccak -8.5 -5.1 -9.6 
Average %inc -7.8 -1.3 -4.7 
Median %inc -7.9 0 -4.6 
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Results of Experiment 2 
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Conclusions 

•  Distributed architecture and parallelization increases throughput of 
benchmarking tasks 
•  Parallelization extended beyond core count of a single machine 
•  Better more efficient use of resources 
•  Greater flexibility 

•  Optimization Space Exploration 
•  Increases number of options searched effectively 
•  Iterative Elimination is a viable alternative to Most effort optimization 

with larger options sets 
•  Optimization chaining yields results that outperform the current 

ATHENa in most cases  



28	
  

ATHENa Database of Results 
http://cryptography.gmu.edu/athenadb   
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User Help 
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Search boxes An Expandable Group of Fields 
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A Group of Fields after Expansion 
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Filtering the Results:   
Hash Size=256, Max #Streams > 1, Family = Virtex 5 
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Sorting Results According to the Number of CLB Slices 
in the Ascending Order 
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Sorting Results According to Throughput (in Mbits/s) 
in the Descending Order 
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Ordered Listing with Multiple Results per Each Algorithm 
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Ordered Listing with a Single-Best (Unique) 
Result per Each Algorithm 
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Link to a Script that Allows Replicating Results with a Single-Run of 
Standard FPGA Tools 
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GMU Web Page with VHDL Source Codes and Block Diagrams of  
the SHA-3 Candidates and SHA-2 
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Comparing Two Results with Each Other 
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Comparing Two Results with Each Other: 
Outcome of the Comparison 
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Setting Criteria for 
Ranking 

of the Candidates 
(FPGA Implementations) 
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Results of Ranking according to the Given Criteria 
for FPGA Implementations 
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Setting Criteria for 
Ranking 

of the Candidates 
(ASIC Implementations) 
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Results of Ranking according to the Given Criteria 
for ASIC Implementations 
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Future Work 

ATHENa Tool 
•  Additional FPGA vendors 
•  Power analysis 
•  Application to comparison and optimization of other cryptographic 

primitives (e.g., public key cryptosystems) 
•  Adapting ATHENa to other application domains 
   (Digital Signal Processing, communications, etc.) 

ATHENa Database of Results 
•  Results including SCA countermeasures 
•  Databases of results regarding 

•  Symmetric-key ciphers 
•  Public-key cryptosystems (RSA, ECC, etc.) 
•  Pairing-based cryptosystems 
•  TRNGs, PUFs? 



Questions? 

Thank you! 
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Questions? 

ATHENa:  http:/cryptography.gmu.edu/athena  


