
1	

ATHENa	
 2.0	
 	

&	
 	

ATHENa	
 Database	
 of	
 Results	

Kris	
 Gaj,	
 Jens-­‐Peter	
 Kaps,	
 	

Benjamin	
 Y.	
 Brewster,	
 John	
 Pham,	

Ekawat	
 Homsirikamol,	
 	

and	
 Rajesh	
 VelegalaJ	

Supported in part by the National Institute of Standards & Technology (NIST)

ATHENa	
 Team	
 -­‐	
 2012	

Ekawat “Ice”
Homsirikamol

PhD ECE
student

Jens-Peter
Kaps

Associate
Professor

Rajesh
Velegalati
PhD ECE
student

John
Pham

MS CpE
student

Benjamin
Brewster
MS CpE
student

ATHENa – Automated Tool for Hardware
EvaluatioN

3	

Open-source benchmarking environment,
written in Perl, aimed at

 AUTOMATED generation of
OPTIMIZED results for
MULTIPLE hardware platforms.

The most recent version
0.6.3 released in May 2012.

http://cryptography.gmu.edu/athena

ATHENa
Server

FPGA Synthesis and

Implementation

Result Summary
+ Database
Entries

2 3

HDL + scripts +
configuration files

1

Database
Entries

Download scripts
and

configuration files8

Designer

4

HDL + FPGA Tools

User

Database
query

Ranking
of designs

5
6

Basic Dataflow of ATHENa

0
Interfaces

+ Testbenches

4

5

•  6 algorithms (BLAKE, Groestl, JH, Keccak, Skein, SHA-2)
•  2 variants (with a 256-bit and a 512-bit output)
•  7 to 12 different architectures per algorithm
•  4 modern FPGA families (Virtex 5, Virtex 6, Stratix III,

Stratix IV)

Benchmarking of the SHA-3 Finalists as a Test Case

Total: ~ 120 designs
 ~ 600+ results

6

SHA-3 Performance Graphs (256-bit variants)

Virtex 5

Best single-message architectures Best overall architectures

7

Throughput vs. Area Trade-offs in Virtex 5

8

Best Single-Message Architectures

9

Best Overall Architectures

10

•  batch mode of FPGA tools

•  automated choice of tool options

•  ease of extraction and tabulation of results (Excel, CSV)

•  close integration with the database of results

Generation of Results Facilitated by ATHENa

vs.

11	

ATHENa Database of Results
http://cryptography.gmu.edu/athenadb

12

•  Parallel Execution on Multiple Computers
•  Utilize idle resources
•  Increase throughput of benchmarking tasks
•  Decrease benchmarking time

•  Usability
•  GUI
•  Monitoring and control
•  Benchmark configuration

•  Optimization Space Exploration
•  Search more options
•  Decrease search time
•  Increase optimization end-performance

Major Improvements To Be Introduced in ATHENa 2.0

13

•  Modular, Extensible, and Maintainable
•  Python in place of Perl
•  Object-Oriented Design Principles
•  Client/Server Architecture
•  Ease of adding and removing functionality

Other Improvements Introduced in ATHENa 2.0

14

•  Candidates
•  Condor – Workload Management System
•  Globus – Meta Scheduler for grid computing
•  Torque – Resource manager, based on PBS (Portable Batch System)
•  MAUI – Scheduler for use with Torque
•  JPPF – Java Parallel Processing Framework
•  SLURM – Simple Linux Utility for Resource Management

•  Evaluation Criteria
•  Flexibility
•  Cross platform
•  Easy to use and administer
•  Reliable
•  No language restrictions
•  Security
•  Fault Tolerance

Parallel Execution on Multiple Computers:
Choice of the Most Suitable Batch System

15

•  Condor
•  Workload Management System
•  Developed at the University of Wisconsin-Madison
•  Provides a job queuing mechanism, scheduling policy, priority scheme, resource

monitoring, and resource management
•  Supports heterogeneous computing resources
•  Actively supported and widely used
•  More details at http://research.cs.wisc.edu/condor/

Selected Batch System

16

Usability:
Graphical User Interface

 Who	
 owns/submi/ed	

	
 the	
 job	

Job	
 Priority	
 (0	
 is	
 default)	
 Job	
 status:	
 Idle/Running	
 	

Idle	
 means	
 the	
 job	
 was	
 paused	
 	

or	
 is	
 waiCng	
 its	
 turn	
 for	
 execuCon	
 	

Job	
 ID	

17

•  Use algorithms inspired by previous research on the programming-
language compilers
•  Least Effort − LE
•  Most Effort − ME
•  Batch Elimination − BE
•  Iterative Elimination − IE
•  Orthogonal Arrays − OA

•  Optimize FPGA-specific algorithms introduced in current ATHENa
•  Frequency Search − FS
•  Placement Search − PS

Optimization Space Exploration:
Our Approach

18

•  Least Effort − minimum execution time, worst results
•  Lazy or Naïve optimization

•  Set all options to the perceived high state
•  Only works well with binary options
•  Requires judgment on what is “high”

•  Used as a baseline
•  Minimum amount of work needed to optimize
•  Almost never optimal

•  Most Effort − maximum execution time, best results
•  Also known as Exhaustive Search
•  Guarantee optimal result
•  Least time-efficient
•  Impractical for more than a handful of options
•  Number of runs needed: 2n, where n is the number of options

Least Effort & Most Effort

19

Batch Elimination

Run

Option
1

Option
2

Option
3

Option
4

Option
5

Improvement
Relative to

Base Options
Ob 0 0 0 0 0 N/A
O1 1 0 0 0 0 +
O2 0 1 0 0 0 −
O3 0 0 1 0 0 −
O4 0 0 0 1 0 +
O5 0 0 0 0 1 +
Of 1 0 0 1 1 N/A

Ob − Base options (all options off)
Oi − Option i on, i=1..n
Of − Final options

Number of runs: n+2
Number of run levels: 2

Based on: Z. Pan and R. Eigenmann, “Fast and Effective Orchestration of
Compiler Optimizations for Automatic Performance Tuning,”
Proc. International Symposium on Code Generation and Optimization, CGO 2006.

Potential disadvantage: The interaction between options is not tested

20

Iterative Elimination

Run Option 1 Option 2 Option 3 Option 4 Option 5
Improvement

Relative to
Current Base

Ob 0 0 0 0 0 N/A
O1 1 0 0 0 0 +5

O2 0 1 0 0 0 −

O3 0 0 1 0 0 −

O4 0 0 0 1 0 +7

O5 0 0 0 0 1 +2

Ob2=O4 0 0 0 1 0
+7 from

baseline 1
O1’ 1 0 0 1 0 +3
O2’ 0 1 0 1 0 −
O3’ 0 0 1 1 0 −
O5’ 0 0 0 1 1 +1

0b3=O1’ 1 0 0 1 0
+3 from

baseline 2
O2” 1 1 0 1 0 −

O3” 1 0 1 1 0 −

O5” 1 0 0 1 1 −
Of 1 0 0 1 0 +10 total

21

Iterative Elimination

Ob − Base options at the start (all options off)
Obj − Base options at level j
Oi − Option i on
Of − Final options

Maximum number of runs: (n+1)(n/2) (can be as few as n+1)
Maximum number of run levels: n (can be as few as 1)

Based on: Z. Pan and R. Eigenmann, “Fast and Effective Orchestration of
Compiler Optimizations for Automatic Performance Tuning,”
Proc. International Symposium on Code Generation and Optimization, CGO 2006.

22

Orthogonal Arrays

n Options

 k
 E

xp
er

im
en

ts

•  k x n matrix where the columns
represent optimization options and
the rows represent the settings used
for each experiment

•  The matrix is filled with 1’s and 0’s to
 represent whether or not a specified
 option is on or off
•  Any two arbitrary columns contain
 the patterns: {00, 01, 10, 11}
 equally often
•  The algorithm guarantees that half of the experiments
 will be conducted with an option Oi on and half with option Oi off
•  For arbitrary two options Oi and Oj there are exactly k/4 experiments
 per each possible setting of these two options

23

Orthogonal Arrays

Number of runs: k+1
Number of run levels: 2

Based on: R.P.J. Pinkers, P.M.W Knijnenburg, M. Haneda, and H.A.G. Wijshoff,
“Statistical Selection of Compiler Options,” 12th Annual International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, 2004.

Run
Option

1
Option

2
Option

3
Option

4
Option

5
O1 1 0 0 0 0
O2 0 1 0 1 0
O3 1 1 1 0 1
O4 0 0 1 1 1
O5 1 0 0 0 1
O6 0 1 0 1 1
O7 1 1 1 0 0
O8 0 0 1 1 0

RIP(Oi) + + − − +
Of 1 1 0 0 +

RIP(Oi) =
P(Oi =1)−∑ P(Oi = 0)∑

P(Oi = 0)∑

24

Experiments

•  Codes: 4 SHA-3 candidate algorithms: BLAKE, JH, Keccak, and Skein
•  FPGA families: Spartan 3 and Virtex 6
•  Version of tools: Xilinx ISE v.13.1
•  Hosts: Two eight core Linux workstations = total of 16 execute hosts
•  Optimization Target: Throughput/Area Ratio

•  Experiment 1
•  Determine ability of Batch Elimination, Iterative Elimination and

Orthogonal Array to achieve optimal results
•  Limited search to 5 options
•  Used Least Effort and Most Effort as basis for comparisons

•  Experiment 2
•  Determine the ability of algorithms to fully optimize a design
•  Used expanded 9 option set and optimization algorithm chaining
•  Used results generated with current ATHENa as basis for comparison

25

Results of Experiment 1

BE IE OA
JH 5.3 16.0 15.5
BLAKE 7.9 33.0 -3.0
Skein 3.3 5.9 -1.9
Keccak -1.3 10.8 8.5

Average %inc 3.8 16.4 4.7

Median %inc 4.3 13.4 3.2

Spartan	
 3:	
 Below	
 Most	
 Effort	
 (%)	
 Spartan	
 3:	
 Above	
 Least	
 Effort	
 (%)	

BE IE OA
JH 8.6 13.5 13.5
BLAKE 26.4 36.4 26.5
Skein -2.6 9.4 7.2
Keccak -2.6 1.1 -3.7
Average %inc 7.5 15.1 10.9
Median %inc 3.0 11.4 10.3

Virtex	
 6:	
 Below	
 Most	
 Effort	
 (%)	
 	
 Virtex	
 6:	
 Above	
 Least	
 Effort	
 (%)	

BE IE OA
JH -9.8 -0.7 -1.1
BLAKE -18.9 0 -27.1
Skein -12.8 -10.6 -17.1
Keccak -10.9 0 -2.1
Average %inc -13.1 -2.8 -11.9
Median %inc -11.8 -0.3 -9.6

BE IE OA
JH -4.3 0 0
BLAKE -7.3 0 -7.3
Skein -11.0 0 -2.0
Keccak -8.5 -5.1 -9.6
Average %inc -7.8 -1.3 -4.7
Median %inc -7.9 0 -4.6

26

Results of Experiment 2

19.13	

42.50	

16.36	

33.00	

9.81	

23.10	

11.88	

2.50	

0.00	

5.00	

10.00	

15.00	

20.00	

25.00	

30.00	

35.00	

40.00	

45.00	

Keccak	
 JH	
 Skein	
 Blake	

New	
 ATHENa	

Old	
 ATHENa	

Spartan 3 Virtex 6

26.53	

54.40	

21.13	

44.30	

24.30	

70.70	

14.94	

43.50	

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

70.00	

80.00	

Keccak	
 JH	
 Skein	
 Blake	

New	
 ATHENa	

Old	
 ATHENa	

Relative Improvement over Least Effort (%)t Relative Improvement over Least Effort (%)t

27

Conclusions

•  Distributed architecture and parallelization increases throughput of
benchmarking tasks
•  Parallelization extended beyond core count of a single machine
•  Better more efficient use of resources
•  Greater flexibility

•  Optimization Space Exploration
•  Increases number of options searched effectively
•  Iterative Elimination is a viable alternative to Most effort optimization

with larger options sets
•  Optimization chaining yields results that outperform the current

ATHENa in most cases

28	

ATHENa Database of Results
http://cryptography.gmu.edu/athenadb

29 29

User Help

30 30
30

Search boxes An Expandable Group of Fields

31 31

A Group of Fields after Expansion

32 32

Filtering the Results:
Hash Size=256, Max #Streams > 1, Family = Virtex 5

33 33

Sorting Results According to the Number of CLB Slices
in the Ascending Order

34 34

Sorting Results According to Throughput (in Mbits/s)
in the Descending Order

35	

Ordered Listing with Multiple Results per Each Algorithm

36	

Ordered Listing with a Single-Best (Unique)
Result per Each Algorithm

37	

38	

Link to a Script that Allows Replicating Results with a Single-Run of
Standard FPGA Tools

39	

GMU Web Page with VHDL Source Codes and Block Diagrams of
the SHA-3 Candidates and SHA-2

40 40

Comparing Two Results with Each Other

41 41

Comparing Two Results with Each Other:
Outcome of the Comparison

42 42

Setting Criteria for
Ranking

of the Candidates
(FPGA Implementations)

43	

Results of Ranking according to the Given Criteria
for FPGA Implementations

44	

Setting Criteria for
Ranking

of the Candidates
(ASIC Implementations)

45	

Results of Ranking according to the Given Criteria
for ASIC Implementations

46

Future Work

ATHENa Tool
•  Additional FPGA vendors
•  Power analysis
•  Application to comparison and optimization of other cryptographic

primitives (e.g., public key cryptosystems)
•  Adapting ATHENa to other application domains
 (Digital Signal Processing, communications, etc.)

ATHENa Database of Results
•  Results including SCA countermeasures
•  Databases of results regarding

•  Symmetric-key ciphers
•  Public-key cryptosystems (RSA, ECC, etc.)
•  Pairing-based cryptosystems
•  TRNGs, PUFs?

Questions?

Thank you!

47

Questions?

ATHENa: http:/cryptography.gmu.edu/athena

