
1	

SHA-­‐3	
 Compe,,on	
 in	
 Hardware	
 	

Methodology,	
 Tools,	
 and	
 Results	
 of	

Comparing	
 Fourteen	
 Round	
 2	
 SHA-­‐3	
 Candidates	

using	
 Reconfigurable	
 Hardware	

Marcin	
 Rogawski,	
 	

Ekawat	
 Homsirikamol,	
 and	

Kris	
 Gaj	

George	
 Mason	
 University	

U.S.A.	

2

•  Timeline

NIST SHA-3 Contest

•  Evaluation criteria
  Security
  Performance in software
  Performance in hardware
  Flexibility

51
candidates

Round 1
14

5-6 1-2 Round 2 Round 3

July 2009 End of 2010 Mid 2012 Oct. 2008

3

Lessons from the Past - AES Contest – 1997-2000

Speed in FPGAs Votes at the AES 3 conference

Round 2 of AES Contest, 2000

4

•  Uniform assumptions
•  256-bit variant & 512-bit variant of each function, padding in software

•  Uniform & practical interface
•  Clear performance metrics
•  Uniform optimization criteria
•  Use of multiple FPGAs from two major vendors
 Xilinx: Spartan 3, Virtex 4, Virtex 5
 Altera: Cyclone II, Cyclone III, Stratix II, Stratix III
•  Use of ATHENa for generation, optimization, and

 comparative analysis of results
•  Techniques for normalizing and averaging results

Our Methodology

5

SHA Core Interface & Typical Configuration

•  SHA core is an active component, surrounding FIFOs are passive and widely available
•  Input interface is separate from an output interface
•  Processing a current block, reading the next block, and storing a result for the previous
 message can be all done in parallel
•  Separate I/O clock is optional, and is used only if necessary to maintain throughput

fifoin_empty	

fifoin_read	

idata	

w	
 w	

odata	

fifoout_full	

fifoout_write	

fifoin_full	

fifoin_write	

fifoout_empty	

fifoout_read	

Input	

FIFO	

SHA	
 core	

clk	
 rst	

ext_idata	

w	

ext_odata	

din	
 dout	

src_ready	

src_read	

dst_ready	

dst_write	

din	
 dout	

full	
 empty	

write	
 read	

Output	

FIFO	

din	
 dout	

full	
 empty	

write	
 read	

w	

clk	
 rst	

clk	
 or	
 io_clk	
 rst	
 clk	
 or	
 io_clk	
 rst	

clk	
 rst	

clk	
 rst	

io_clk	

io_clk	

6

Format of Input Data for Padded Messages
a) one-segment message, b) multi-segment message

msg_len | last = 1

message

w bits

seg_0_len | last=0

seg_0

w bits

seg_1_len | last=0

seg_1




seg_n-1_len | last=1

seg_n-1

a)

msg_len_bp

seg_n-1_len_bp

b)

msg_len, seg_i_len - message/segment i
 length after padding

msg_len_bp, seg_i_len_bp – message/segment i
 length before padding

last – the last segment indicator

7

Hash Time in Clock Cycles (of the main clock)

N - number of message blocks after padding. N=msg_len/block_size.
cINIT - number of clock cycles necessary to establish communication
 with the source of data (typically, Input FIFO)
cIN - number of clock cycles required to read the very first block
 of the message. cIN = block_size/w.
rIO - ratio of the I/O clock frequency to the main clock frequency
cBLOCK - number of clock cycles required to process
 one block of the message
cFINAL - number of clock cycles required for the finalization
 (once per message)
cOUT - number of clock cycles required to write hash value to
 the destination circuit (typically Output FIFO). cOUT=output_size/w.

⎾⏋

8

Performance Metrics - Speed

Maximum Throughput
(for long messages) = block_size

T * (Htime(N+1)-Htime(N))

Message block size,
from

specification

Minimum clock period,
from

the place & route report
and/or

static timing analysis report

Time of processing of
a single block in clock cycles,

from
analysis of a block diagram
and/or functional simulation

9

Performance Metrics - Area

We force these vectors to look as follows
through the synthesis and implementation options

0

0

0

0

Areaa

10

Primary Optimization Target: Throughput to Area Ratio

Features:
•  practical: good balance between speed and cost
•  very reliable guide through the entire design process,

facilitating the choice of
  high-level architecture
  implementation of basic components
  choice of tool options

Choice of Optimization Target

11

Throughput:
•  leads to highly unrolled architectures: minor increase in

speed at the cost of major increase in area
Latency:

•  depends highly on message size (one block of message
has a different meaning for different functions)

•  quite dependent on the interface
•  influence of padding

Area:
•  leads to highly sequential and relatively slow designs
•  result dependent on the maximum amount of area

available

Disadvantages of other Optimization Targets

12

•  identifying most complex task that can be executed in an iterative
fashion (without significant overhead)

•  either multiple rounds or a fraction thereof may be appropriate
•  trade-off: number of clock cycles per block vs. clock period (length of

the critical path)

High-level Architecture

13

I/O Bus Width, Hash Time, & Throughput

14

Basic Operations of SHA-3 Candidates

14
NTT – Number Theoretic Transform, GF MUL – Galois Field multiplication,

MUL – integer multiplication, mADDn – multioperand addition with n operands

15

•  at least two alternative architectures for several most
complex operations (NTT, linear code, AES SubBytes,
multioperand addition)

•  all basic operation designs applied uniformly to all functions
(through a common package)

•  any possible doubts resolved experimentally

Optimizing Basic Operations

16

•  universal testbench common for SHA-2 and all SHA-3
candidates

•  special padding script developed in Perl to pad messages
included in KAT (Known Answer Test) files

•  final result tested using known answer tests

•  final verification automated using ATHENa

Verification of Codes

17

•  generation of results facilitated by ATHENa

•  batch mode of FPGA tools

•  ease of extraction and tabulation of results

•  uniform optimizations using ATHENa
•  Frequency search for the best requested synthesis and

implementation clock frequencies (effective for Xilinx only)

•  Exhaustive search for the best set of tool options

•  Placement search for the best starting point of placement

Generation of Results Using ATHENa

18

Throughput [Mbit/s] for Xilinx Virtex 5 – 256-bit variants
13

36
0

10
80

7

86
77

80
08

55
77

40
14

31
90

31
51

28
86

26
46

26
24

26
11

23
26

16
31

14
16

0
2000
4000
6000
8000

10000
12000
14000
16000

19

Area [CLB slices] for Xilinx Virtex 5 – 256-bit variants
43

3 73
0 94
6

95
6 11
30

11
54

12
29

12
66

12
75

13
12

18
51

18
84

44
00

64
53

92
88

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

20

Throughput/Area for Xilinx Virtex 5 – 256-bit variants
8.8

6.9

4.6

4.4

3.8

3.3

3.1

2.8

2.6

2.1

1.6

1.4

1.3

1.1

0.3

0
1
2
3
4
5
6
7
8
9

10

Throughput to Area ratio (Virtex5)

21

Throughput to Area Ratio Normalized to the Results for SHA-256

Overall = Geometric Mean of Results
for all FPGA families

22

Throughput vs. Area Normalized to Results for SHA-256
and Averaged over 7 FPGA Families – 256-bit variants

23

Throughput vs. Area Normalized to Results for SHA-512
and Averaged over 7 FPGA Families – 512-bit variants

24

Conclusions

•  Large differences among competing candidates;
 e.g., the best to worst result ratio:
 9 for Throughput (Keccak-256 vs. Skein-256)
 13 for Area (CubeHash-256 vs. ECHO-256)
 27 for Throughput/Area (Keccak-256 vs. SIMD-256)
•  Only three candidates:
 Keccak-256, Luffa-256, & CubeHash-256
 outperform SHA-256 in terms of Throughput/Area
•  Only two candidates:

 Keccak-512 and CubeHash-512
 outperform SHA-512 in terms of Throughput/Area

