
1	
  

SHA-­‐3	
  Compe,,on	
  in	
  Hardware	
  	
  
Methodology,	
  Tools,	
  and	
  Results	
  of	
  

Comparing	
  Fourteen	
  Round	
  2	
  SHA-­‐3	
  Candidates	
  
using	
  Reconfigurable	
  Hardware	
  

Marcin	
  Rogawski,	
  	
  
Ekawat	
  Homsirikamol,	
  and	
  

Kris	
  Gaj	
  
George	
  Mason	
  University	
  

U.S.A.	
  



2 

•  Timeline 

NIST SHA-3 Contest 

•  Evaluation criteria 
  Security 
  Performance in software 
  Performance in hardware 
  Flexibility 

51  
candidates 

Round 1 
14  

5-6  1-2 Round 2 Round 3 

July 2009  End of 2010 Mid 2012 Oct. 2008  
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Lessons from the Past  - AES Contest – 1997-2000 

Speed in FPGAs Votes at the AES 3 conference 

Round 2 of AES Contest, 2000 
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•  Uniform assumptions 
•  256-bit variant & 512-bit variant of each function, padding in software 

•  Uniform & practical interface 
•  Clear performance metrics  
•  Uniform optimization criteria 
•  Use of multiple FPGAs from two major vendors 
           Xilinx:   Spartan 3, Virtex 4, Virtex 5 
   Altera:  Cyclone II, Cyclone III, Stratix II, Stratix III 
•  Use of ATHENa for generation, optimization, and 

 comparative analysis of results 
•  Techniques for normalizing and averaging results 

Our Methodology 
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SHA Core Interface & Typical Configuration 

•  SHA core is an active component, surrounding FIFOs are passive and widely available 
•  Input interface is separate from an output interface 
•  Processing a current block, reading the next block, and storing a result for the previous 
   message can be all done in parallel 
•  Separate I/O clock is optional, and is used only if necessary to maintain throughput 
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Format of Input Data for Padded Messages 
a) one-segment message, b) multi-segment message 

msg_len  | last = 1 

message 

w bits 

seg_0_len | last=0 

seg_0 

w bits 

seg_1_len | last=0 

seg_1 

 
 

seg_n-1_len | last=1 

seg_n-1 

a) 

msg_len_bp 

seg_n-1_len_bp 

b) 

msg_len, seg_i_len  - message/segment i 
                                 length after padding 

msg_len_bp, seg_i_len_bp – message/segment i 
                                        length before padding 

last – the last segment indicator 
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Hash Time in Clock Cycles (of the main clock) 

N      - number of message blocks after padding. N=msg_len/block_size. 
cINIT   - number of clock cycles necessary to establish communication  
           with the source of data (typically, Input FIFO) 
cIN       - number of clock cycles required to read the very first block  
           of the message. cIN =  block_size/w. 
rIO      - ratio of the I/O clock frequency to the main clock frequency 
cBLOCK - number of clock cycles required to process  
             one block of the message 
cFINAL  - number of clock cycles required for the finalization  
            (once per message) 
cOUT  - number of clock cycles required to write hash value to  
           the destination circuit (typically Output FIFO). cOUT=output_size/w. 

⎾⏋ 
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Performance Metrics - Speed 

Maximum Throughput  
(for long messages)    = block_size 

T *  (Htime(N+1)-Htime(N))  

Message block size, 
from  

specification 

Minimum clock period,  
from  

the place & route report 
and/or 

static timing analysis report 

Time of processing of  
a single block in clock cycles, 

from  
analysis of a block diagram 
and/or functional simulation 



9 

Performance Metrics - Area 

We force these vectors to look as follows 
through the synthesis and implementation options       

0 

0 

0 

0 

Areaa 
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Primary Optimization Target: Throughput to Area Ratio 

Features: 
•  practical: good balance between speed and cost 
•  very reliable guide through the entire design process, 

facilitating the choice of 
  high-level architecture 
  implementation of basic components 
  choice of tool options 

Choice of Optimization Target 
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Throughput: 
•  leads to highly unrolled architectures: minor increase in 

speed at the cost of major increase in area 
Latency: 

•  depends highly on message size (one block of message 
has a different meaning for different functions) 

•  quite dependent on the interface 
•  influence of padding 

Area: 
•  leads to highly sequential and relatively slow designs 
•  result dependent on the maximum amount of area 

available 

Disadvantages of other Optimization Targets 



12 

•  identifying most complex task that can be executed in an iterative 
fashion (without significant overhead) 

•  either multiple rounds or a fraction thereof may be appropriate  
•  trade-off: number of clock cycles per block vs. clock period (length of 

the critical path) 

High-level Architecture 
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I/O Bus Width, Hash Time, & Throughput 
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Basic Operations of SHA-3 Candidates 

14 
NTT – Number Theoretic Transform, GF MUL – Galois Field multiplication, 

MUL – integer multiplication, mADDn – multioperand addition with n operands 
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•  at least two alternative architectures for several most 
complex operations (NTT, linear code, AES SubBytes, 
multioperand addition) 

•  all basic operation designs applied uniformly to all functions 
(through a common package) 

•  any possible doubts resolved experimentally 

Optimizing Basic Operations 
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•  universal testbench common for SHA-2 and all SHA-3 
candidates 

•  special padding script developed in Perl to pad messages 
included in KAT (Known Answer Test) files 

•  final result tested using known answer tests 

•  final verification automated using ATHENa 

Verification of Codes 
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•  generation of results facilitated by ATHENa 

•  batch mode of FPGA tools 

•  ease of extraction and tabulation of results 

•  uniform optimizations using ATHENa 
•  Frequency search for the best requested synthesis and 

implementation clock frequencies (effective for Xilinx only) 

•  Exhaustive search for the best set of tool options  

•  Placement search for the best starting point of placement 

Generation of Results Using ATHENa 
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Throughput [Mbit/s] for Xilinx Virtex 5 – 256-bit variants 
13
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Area [CLB slices] for Xilinx Virtex 5 – 256-bit variants 
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Throughput/Area for Xilinx Virtex 5 – 256-bit variants 
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Throughput to Area ratio (Virtex5) 
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Throughput to Area Ratio Normalized to the Results for SHA-256 

Overall = Geometric Mean of Results 
for all FPGA families 
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Throughput vs. Area Normalized to Results for SHA-256  
and Averaged over 7 FPGA Families – 256-bit variants 
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Throughput vs. Area Normalized to Results for SHA-512  
and Averaged over 7 FPGA Families – 512-bit variants 
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Conclusions 

•  Large differences among competing candidates; 
    e.g., the best to worst result ratio: 
              9 for Throughput (Keccak-256 vs. Skein-256) 
            13 for Area (CubeHash-256 vs. ECHO-256) 
             27 for Throughput/Area (Keccak-256 vs. SIMD-256) 
•  Only three candidates:  
                   Keccak-256, Luffa-256, & CubeHash-256     
    outperform SHA-256 in terms of Throughput/Area   
•  Only two candidates: 

     Keccak-512 and CubeHash-512     
    outperform SHA-512 in terms of Throughput/Area 


