CERG

Fair Comparison of Hardware
Implementations of Cryptography without
Revealing the Source Codes

by Kris Gaj, Venkata Amirineni,
Ekawat Homsirikamol, Marcin Rogawski,

Michal Varchola, and Rajesh Velegalati

Venkata
“Vinny”
MS CpE
student

Ekawat

“Ice”
MS CpE
student

Our Team

Rajesh

MS CpE
student

Marcin Michal
visitor
PhD ECE from Technical
student University of Kosice
PhD student

of Milos Drutarovsky

Previous work

Optimizations

Previous work

Optimizations

Problem to be solved

Comparison of hardware implementations of
cryptographic algorithms that is
- fair : based on objective criteria
- comprehensive : based on multiple hardware
platforms and software tools
- reliable : reproducible

- does not require revealing the code : practical,
acceptable for majority of designers

Goals

comparing multiple cryptographic algorithms competing in the
contests for national and international standards, such as SHA-3
contest

comparing multiple hardware architectures or implementations of the
same cryptographic algorithm, such as a paper for CryptArchi or CHES

comparing various hardware platforms from the point of view of their
suitability for the implementation of a given algorithm, such as a
choice of an FPGA device or FPGA board for implementing a particular
cryptographic system

comparing various tools and languages in terms of quality of results
they generate (e.g. Synplicity Synplify Pro vs. Xilinx XST, Verilog vs.
VHDL vs. AHDL), ISE v. 10.2 vs. ISE v. 9.1, etc.)

Common research “frauds” (1)

taking credit for improvements in technology
e.g. comparing Bob's AES in Virtex 5 vs. Alice's AES in Virtex 2 Pro

choosing a convenient performance measure
e.g. Throughput/CLB slices, with majority of logic implemented using
Block RAMs or DSP blocks
comparing designs with different functionality
e.g., encryption+decryption vs. encryption only;
encryption+key scheduling vs. encryption only,
three-keys-in-one vs. 128-bit key only;

full functionality vs. core functionality with precomputations
and/or postcomputations in software;

comparing the speed of different operations

e.g., comparing the combined speed of hashing 8 messages in parallel
vs. the speed of hashing a single long message.

Common research “frauds” (2)

designs optimized using different optimization criteria

e.g., comparing Bob's design optimized for minimum latency

vs. Alice's design optimized for a minimum product of latency times
area (especially using latency as the only criterion)

comparing clock frequency after synthesis vs. clock frequency
after placing and routing [rare, but still happens]

using different input/output interfaces
e.g. 64-bit data bus vs. 32-bit data bus

Objective difficulties & possible solutions (1)

e no standard interfaces
Solutions:

— develop standard interfaces for most common cryptographic operations
(encryption/decryption, hash function, MAC generation/verification, etc.)
or at least for most common algorithms (AES, 3DES, SHA-1, SHA-512, etc.)

— report and reuse interfaces using the on-line database

— compare only with designs using the same or very similar interface

result dependent on option settings, amount of time spent on working
with the tools, and the methodology used

Solutions:
— propose the optimization methodology suitable for majority of designs
— allow sufficient time in the batch mode to go over multiple tool options

— allow designers to use the best optimization methodology they can come
up with but require or at least encourage publishing such methodology

Objective difficulties & possible solutions (2)

 implementation-specific constraints such as path-specific timing
constraints; area constraints generated using a floorplanner; physical
synthesis, etc.

Solutions:

— compare designs in different categories without implementation-specific
constraints, and with implementation-specific constraints

— report results in both categories in order to evaluate the influence of
implementation-specific constraints

— require or at least encourage reporting constraint files
 codes may be optimized for one particular platform (FPGA family)

Solutions:
— results reported separately for each pair vendor-family

— designer can specify a target FPGA device his design was optimized for (if

any)
— other designers can optimize their designs for the same target

Objective difficulties & possible solutions (3)

 different tools,
e.g., Synplicity Synplify Pro vs. Xilinx XST
Solutions:
— generate results for various tools
— clearly report tools used

— compare either only with results generated by a given tool; or with the
best results obtained across different combinations of tools

 different versions of tools
e.g., Xilinx ISE v. 9.1 vs. Xilinx ISE 10.2

Solutions:
— investigate the difference in results

— rerun the implementations periodically when the new versions of tools
appear

Objective difficulties & possible solutions (4)

* influence of surrounding logic and device utilization,
e.g., stand-alone design vs. a functional module of the bigger entity

Solutions:
— report only stand-alone designs

— automated choice of an FPGA device aimed at a certain maximum
utilization of FPGA resources (CLB slices, Block RAMs, DSP Blocks, etc.)

— maximum utilization chosen safely based on experiments with multiple
cryptographic cores
« different optimization criteria, such as speed, area, speed/area
Solutions:
— always report the optimization criteria
— compare only designs optimized using the same criterion

Previous work

Optimizations

Previous work

eBACS: ECRYPT Benchmarking of Cryptographic Systems
http://bench.cr.yp.to

Project to compare software implementations of cryptographic algorithms
Developed by: Daniel J. Bernstein and Tanja Lange (2006-present)
Activity of: VAMPIRE: Virtual Application and Implementation REsearch Lab

Integrates:
eBATS: ECRYPT Benchmarking of Asymmetric Systems
eBASC: ECRYPT Benchmarking of Stream Ciphers
eBASH: ECRYPT Benchmarking of All Submitted Hashes

Extends earlier software evaluation projects developed by different groups

within NESSIE and eSTREAM.

SUPERCOP

System for Unified Performance Evaluation Related to Cryptographic
Operations and Primitives

* toolkit developed by the VAMPIRE lab for measuring the performance
of cryptographic software

* measures the performance of
— hash functions
— secret-key stream ciphers
— public-key encryption systems
— public-key signature systems

— public-key secret-sharing systems

 outputis an extensive set of measurements in a form suitable for easy
computer processing

SUPERCOP

measurements on multiple machines (currently over 70)
and machine-ABI (application binary interface) combinations
(currently over 100)

each implementation is recompiled multiple times (currently over
1200 times) with various compiler options to identify best working
options for implementation, machine

time measured in clock cycles/byte for multiple input/output sizes

median, lower quartile (25th percentile), and upper quartile (75th
percentile) reported

standardized function arguments (may be implemented using
wrappers)

Similarities in comparing software and FPGA designs

relatively few major vendors
Intel and AMD for general-purpose microprocessors
Xilinx and Altera for FPGAs

good quality tools available for free
GNU compilers for software
full or slightly reduced versions of tools for FPGAs

multiple options of tools

software programs can be written targeting a specific processor;
HDL codes can be written targeting a specific FPGA family

low level optimizations possible but typically not portable:
in software - assembly language; in FPGAs - low level macros

Differences in comparing software and FPGA designs

in software speed is a major parameter;
in hardware speed and area need to be taken into account and can be often
traded one for the other

in software clock frequency is fixed for a given processor;

tools try to optimize the sequence of instructions;

in FPGAs clock frequency determined by the implemented circuit;

tools try to optimize the most critical paths, and thus minimize the clock
period

in software execution time is measured directly with some non-negligable
measurement error; in FPGAs minimum clock period is reported by software
tools; minimum execution time is calculated;

open source software cryptographic libraries widely available; very few open
source cryptographic hardware designs

Previous work

Optimizations

Our Tool

ATHENa — Automated Tool for Hardware EvaluatioN

Set of scripts written in Perl aimed at an
AUTOMATED generation of
OPTIMIZED results for
MULTIPLE hardware platforms

Currently under development at
George Mason University.

The first proof-of-concept version
to be released before

CHES 2009, and announced
during the rump session at CHES.

20

Our Tool

ATHENCA — Automated Tool for Hardware EvaluatioN
of Cryptographic Algorithms

Focus on comparison of
cryptographic algorithmes,

such as hash functions
competing in the SHA-3 contest

Still young and immature...

21

ATHENa Major Features

running all steps of synthesis, implementation, and timing analysis in
the batch mode

support for devices and tools of multiple FPGA vendors:
Xilinx, Altera, Actel

generation of results for multiple families of FPGAs of a given vendor

automated choice of a device within a given family of FPGAa assuming
that the resource utilization does not exceed a certain limit, e.g., 80%
of CLB slices, or 70% of BRAM

choice of multiple optimization criteria (speed, area, ratio speed/area)

heuristic optimization algorithms aimed at maximizing the
performance measures (e.g., speed) based on checking multiple
options, and multiple target clock frequencies

ATHENa Additional Features

 automated verification of the design through simulation, run in the
batch mode based on the provided testbench (optional):

— Functional
— Post-synthesis
— Timing
e support for Windows and Linux

e Graphical User Interface

Requirements:
— interpreter of Perl

— FPGA tools: free, educational, or commercial versions

ATHENa Input/Output

Input:
— synthesizable source files
— configuration files (text files)
— testbench (optional)
— constraint files (optional)
Output:

— result summary (human readable)

— database entries (suitable for computer postprocessing)

Design Configuration File

PROJECT NAME = AES128

TOP_LEVEL _ENTITY = aes_top

OPTIONS = [default | user]

OPTIMIZATIONS = [single_run | default | user]
VENDOR = [Xilinx | Altera | Actel]

FPGA FAMILY = [Spartan3 | Virtex4 | Virtex5 | etc.]
FPGA DEVICES = [best_match | list of specific_devices]
#for best_match and Xilinx FPGAs only

MAX_CLB_UTILIZATION =0.8
MAX_BRAM_UTILIZATION =1.0
MAX_MUL_UTILIZATION =1.0

MAX_PIN_UTILIZATION =0.9

Device library file

VENDOR = Xilinx
FAMILY =Spartan3

DEVICES =

#Device, Total CLBs, Block RAMs, Dedicated Multipliers, Max. User 1/0O
XC3S50, 728, 4, 4, 124
XC3S200, 320, 12, 12, 173
XC35400, 896, 16, 16, 264
XC351000, 1920, 24, 24, 391
XC3S51500, 3328, 32, 32, 487
XC352000, 5120, 40, 40, 565
XC354000, 6912, 96, 96, 633

XC355000, 8320, 104, 104, 633

Tool Configuration File

SYNPLIFY_DIR = C:/synpro/bin

XILINX_DIR = [C:/Xilinx91i/bin/nt | C:\Xilinx\10.1\ISE\bin\nt]
ISE_ VERSION =[9.1 | 10.1]

SYNTHESIS _TOOL = [synplify | native]

Result Summary (1)

---Tool names and versions---

ISE web pack 9.1

---Family and Device---
Spartan3 xc3s50pq208-5
Virtex4 xc4vsx25ff668-12

---Synthesis options---
-opt_mode speed

-opt_level 1

---Optimizations---

ATHENa default

Result Summary (2)

Timing results:

| Devices Synthesis Implementation |
S |

| xc3s50pg208-5 56.899 MHz 40.455 MHz |

| xc4vsx25ff668-12 98.260 MHz 98.600 MHz|
S |

Resource utilization:

| e
| Devices CLB Slices BRAMs Multipliers DSP blocks

| e
| xc3s50pq208-5 459 0 0 0

| xc4vsx25ff668-12 459 0 0 0

Basic Dataflow of ATHENa

User FPGA Synthesis and
Implementation

Ranking a 9

f desi
of designs HDL + scripts + Result Summary

configuration files + Database Entries

Download scripts and
configuration files

J— >

. ® —
Designer

Database Entries

Polices regarding the submission of results

Require:
- tool names, versions, detailed options
Encourage:
— 1/0O Interface
— Testbench
— Constraint files
Why?
* do not reveal much information about the internal structure of codes
* Save time of subsequent designers
* Significantly simplify fair comparison
Optional:

— source code a plus, but not really crucial for comparison

ATHENa Reporting

majority of database entries generated automatically by the scripts
(based on configuration files and result summaries)

some fields generated through postprocessing (e.g., latency and
throughput); it is the designer's responsibility to provide the correct
formula

data retrieved from the database based on the selected fields
e.g., algorithm: AES

key size: 128

FPGA vendor: Altera

all other fields: any

data arranged based on a value of the specific field
e.g., by Throughput or by Number of CLB slices

previously reported results can be replaced with the new ones or
completely withdrawn by the users

Previous work

Optimizations

Optimization Algorithm

Multiple optimization algorithms considered and tested
experimentally using available cryptographic cores.

Separate algorithm required for different optimization criteria:

Speed, Area, Speed/Area.

Speed always proportional to Clock Frequency .

Area may have different measures (CLB slices, LUTs, BRAM, MULs, etc.)

One or more algorithms to be selected in each category as default
algorithms, with corresponding scripts distributed as a part of ATHENa.

Designers are encouraged to develop and implement their own
optimization algorithms. Designers encouraged to post description or
implementation of these algorithms together with their results to
make them available to other members of the community.

First Optimization Algorithm
by Marcin Rogawski

first single run with default options of tools to determine the initial
value of the target clock frequency

requested clock frequency increased gradually, first by 5%, and then
(after failure) by 1%

for each requested clock frequency: up to 100 runs of Multi-Pass
Place-and-Route with different values of a cost table (determining the
starting point for placement), until the requested frequency reached

synthesis repeated for each new requested clock frequency

optimum choice of the overall, placer, and router efforts

Multi-Pass Place-and-Route Analysis

Number of occurrences

of clock period values

18
16
14
12
10

8

o N B O

o o5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10

Clock period (ns)

Dependence of results on requested clock frequency
400 MHz 350 MHz

N
)
=
o)

=
o

=

S

14 12
12
10
10
8
8
6
6
a 4
2 I | 2 |
N T ' L . anl TIT
6 6.5 7 7.5 8 8.5 6 6.5 7 7.5 8 8.5
300 MHz ATHENa optimization algorithm
16 80
14 70
12 60
10 50
8 40
6 30
4 20
g L)1 w
N | . in.l. .
6 6.5 7 7.5 8 8.5 6 6.5 7 7.5 8 8.5

Optimization Type

 Type 1: default vendor options of tools (single run)

 Type 2: ATHENa default optimization algorithm with
ATHENa default configuration options

 Type 3: designer's own optimization algorithm or configuration options
without floorplaning or physical synthesis

* Type 4: designer's own optimization algorithm involving
floorplaning or physical synthesis

 Type 5: designer's own optimization algorithm involving manual routing

Most of the users expected to submit results of Type 1 and 2 only.
Most-advanced users would submit results of Type >= 3.
Users submitting the results of Type N requested to submit also

results for all Type numbers < N.

Previous work

Optimizations

Fairness is in the eyes of the beholder

The best tools will not replace:

— proper motivation and internal integrity of researchers

— proper supervision by faculty advisors and senior
managers

— thorough evaluation by independent and objective
reviewers

— proper system of awards and sanctions

Possible extensions

standard-cell ASICs
actual experimental measurements in hardware
(power and energy consumption, latency, throughput)

taking into account resistance to side-channel attacks

other fields (e.g. DSP)

= material for additional Master's and PhD Theses

Conclusions

We propose a tool for a fair, comprehensive, reliable,
and practical evaluation of cryptographic hardware,
without the need to reveal the source code.

Hope to discourage naive and/or dishonest comparisons,
provide transparency, and overcome objective difficulties.

First version expected at the end of summer.
Subsequent versions made available as the tool matures.

All scripts and configuration files will be made available in
public domain through the project web site.

Comments, feedback, use, and co-development very
welcome.

Questions?

Comments?

