

ATHENa - Automated Tools for Hardware EvaluatioN

Kris Gaj¹, Jens-Peter Kaps¹, Venkata Amirineni¹, Ekawat Homsirikamol¹, Marcin Rogawski¹, Rajesh Velegalati¹, and Michal Varchola²

¹George Mason University, USA

²Technical University of Kosice, Slovakia

Motivation

Comparison of FPGA implementations of cryptographic algorithms that is : based on objective criteria

- comprehensive: based on multiple FPGA devices and CAD
- : all tools run in a batch mode, without user
- supervision
- : reproducible

- does not require revealing the code: practical, acceptable for

majority of designers

Previous Work

eBACS: ECRYPT Benchmarking of Cryptographic Systems http://bench.cr.yp.to

Project to compare software implementations of cryptographic algorithms developed by: Daniel J. Bernstein and Tanja Lange (2006-present)

- multiple types of cryptographic algorithms
- standardized function arguments (APIs)
- measurements performed on multiple machines (currently over 70)
- choice of best compilation options (from among over 1200 different combinations)
- time measured in clock cycles/byte for multiple input/output sizes
- output suitable for easy computer processing

Software

FPGAs

few major vendors

Intel, AMD

Xilinx, Altera

free software tools

GNU compilers

Xilinx WebPACK Altera Quartus Web Edition

multiple options of tools

low-level optimizations possible but not portable

assembly language

IP cores, manual placement & routing

Software

FPGAs

Optimization target

execution time, memory

speed, area, power, balanced

Optimization of

optimum sequence of optimum structure instructions of the circuit

Memory management

multiple levels of memory hierarchy

simple memory hierarchy

Execution Time

measured directly

calculated based on results of timing analysis

Proposed Solution

ATHENa – Automated Tool for Hardware EvaluatioN

Set of scripts written in Perl aimed at an AUTOMATED generation of OPTIMIZED results for MULTIPLE hardware platforms, currently under development at George Mason University.

> The first proof-of-concept version available at http://cryptography.gmu.edu/athena

ATHENa Allows Comparing

- * Algorithms, e.g. candidates in the SHA-3 contest
- * Architectures and implementations, e.g., basic iterative vs. unrolled, GMU implementation vs. Bochum implementation
- * Hardware platforms, e.g. Xilinx Virtex 6 vs. Altera Stratix IV
- * Languages and tools, e.g., VHDL vs. Verilog vs. AHDL, Synplify Pro vs. Xilinx XST

Basic Dataflow of ATHENa

Major Features

- * synthesis, implementation, and timing analysis in the batch mode
- support for devices and tools of multiple FPGA vendors:

EX XILINX.

* generation of results for multiple families of FPGAs of a given vendor

Under Development

* automated verification of the design through simulation in the batch mode

* exhaustive search for optimum options of the tools

heuristic optimization algorithms aimed at maximizing selected performance measures (e.g., speed, area, speed/area ratio, power, cost, etc.)

testbench database entries result summary (machine-(user-friendly) friendly)

Results

Results for Hash Functions SHA-I and SHA-2 Xilinx FPGAs

Results for Hash Functions SHA-1 and SHA-2 Xilinx vs. Altera FPGAs

requested - 200Mhz Note: smaller is better

Dependence of Results on Requested Clock Frequency

Applications & Extensions

Short-Term Application – SHA-3 Contest

- ❖ analysis of 14 hash functions qualified to the second round of the **SHA-3** contest
 - BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, Skein
- * GMU students implementing, optimizing, and benchmarking all 14 candidates in Fall 2009
- * Comparison vs. existing optimized implementations of SHA-1 and SHA-2 standards
- * VHDL codes and results of analysis published at the ATHENa web site by December 31, 2009

Possible extensions

- * standard-cell ASICs
- * actual experimental measurements in hardware (power and energy consumption, latency, throughput)
- * taking into account resistance to side-channel attacks
- ❖ other fields (e.g. DSP)

Conclusions

- ❖ We propose a tool for a fair, comprehensive, reliable, and practical evaluation of cryptographic hardware
- ❖ Hope to discourage naive and/or dishonest comparisons, provide transparency, and overcome objective difficulties
- ❖ The proof-of-concept beta version 0.1 available at http://cryptography.gmu.edu/athena Subsequent versions made available as the tool matures.
- ❖ All scripts and configuration file templates will be made available in public domain (GPL) through the project web site.