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Abstract. In this paper we present a comprehensive comparison of all Round 3 SHA-3 
candidates and the current standard SHA-2 from the point of view of hardware performance in 
modern FPGAs. Each algorithm is implemented using multiple architectures based on the 
concepts of iteration, folding, unrolling, pipelining, and circuit replication. Trade-offs between 
speed and area are investigated, and the best architecture from the point of view of the 
throughput to area ratio is identified. Finally, all algorithms are ranked based on their overall 
performance, and the characteristic features of each algorithm important from the point of view 
of its implementation in hardware are identified. 
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1. Introduction 
 
Performance in hardware is one of the major criteria used in the SHA-3 competition [17]. Typically, this 
performance is evaluated using two major technologies: Field Programmable Gate Arrays (FPGAs) and 
Application Specific Integrated Circuits (ASICs). Comparison using FPGAs offers several important 
advantages, such as short development time, accurate post place & route results, existence of tools for 
optimum choice of program options and automated collection of a large number of results [1], and 
relatively small number of vendors and device families that dominate the market. As a result, our FPGA 
performance evaluation covers significantly broader design space than any ASIC comparison we are 
aware of. In particular, in this paper, each of the SHA-3 finalists is implemented in both basic variants, 
with a 256-bit and a 512-bit output, and each variant is implemented using from 5 to 10 different 
hardware architectures based on the concepts of iteration, folding, unrolling, pipelining, and circuit 
replication. Each architecture is equipped with a realistic FIFO-based interface with a modest pin 
requirement, and the capability for simultaneous processing of the current message block, reading the 
next message block, and writing the previously computed hash value to the output FIFO [4,10,11]. Unlike 
any ASIC implementations, and majority of earlier reported FPGA implementations, our SHA-3 
candidate cores are equipped with full padding units, capable of processing any messages ending on a 
boundary of a byte. All VHDL source codes have been developed by two primary designers, closely 
collaborating with each other, which substantially minimizes the potential influence of different designer 
skills. Majority of source codes and the corresponding block diagrams have already been published on 
the web and made available for public scrutiny [1]. The remaining source codes will be made publicly 
available by the time of the conference. All cores have been implemented and characterized using four 
modern high-performance FPGA families from two major vendors, Xilinx and Altera. All implementation 
results have been optimized and generated using ATHENa (Automated Tool for Hardware Evaluation) 
[1]. The details of all 600+ results are available in the ATHENa database [1], where they can be 
interactively accessed, reviewed, ranked, searched for, and compared to one another. For each set of 
results, ATHENa database holds also a set of replication scripts and configuration files that can be used 
by a third party to efficiently reproduce all results without using ATHENa. Finally, we also demonstrate 
in this paper that selected FPGA results show very good correlation with the corresponding ASIC results 
obtained using a typical standard-cell library based on the similar 65nm CMOS technology. 
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2. Previous work 
 
Previous results on comparison of Round 2 SHA-3 candidates in hardware are summarized in [18]. These 
results are classified into four major categories, based on the technology (FPGA vs. ASIC), and the 
optimization target (High-Speed vs. Low-Area). The previous results most relevant to the subject of this 
paper belong to the category of High-Speed Implementations in FPGAs. The most comprehensive results 
belonging to this category were reported by Baldwin et al. [3], Gaj et al. [4], Homsirikamol et al. [10], 
and Matsuo et al. [15]. All these groups have published results for all 14 Round 2 candidates. Majority of 
published results concern 256-bit variants of the candidates, implemented using Xilinx Virtex 5 FPGAs. 
In [10], results for 256-bit and 512-bit variants of all algorithms, implemented using 10 FPGA families 
from Xilinx and Altera are discussed. Additionally, pipelined implementations of three Round 2 SHA-3 
candidates have been investigated in [2]. In our earlier paper, published at CHES 2011 [11], we 
investigated the throughput vs. area trade-offs in implementations of SHA-2 and five SHA-3 finalists. In 
this paper, we present results obtained by extending each architecture with a padding unit, and optimizing 
selected pipelined implementations of the SHA-3 candidates. 

Three comprehensive comparisons of low-area implementations of Round 3 SHA-3 candidates have 
been presented in [12,13,14]. The most comprehensive studies of ASIC implementations of the Round 3 
SHA-3 candidates are presented in [7,8]. These studies follow previous investigation of Round 2 SHA-3 
candidates described in [6,9,20]. 

All results obtained based on the Round 2 specifications of SHA-3 candidates carry without any 
changes for Keccak and Skein. The specifications of BLAKE, Groestl, and JH have been tweaked at the 
start of Round 3, in January 2011. The throughput of the Round 3 BLAKE and JH can be calculated 
based on the results from Round 2 by decreasing it by a factor proportional to the increase in the number 
of rounds. The area of these implementations will remain practically the same. The change in the 
throughput and area of Groestl is much more difficult to approximate, as demonstrated in [16]. 

 
3. Performance Metrics 
 
Three major performance metrics used in our study are throughput, area, and throughput to area ratio.  
Throughput is understood as the throughput for long messages, or cumulative throughput for a large 
number of small messages (where processing and input/output functions overlap in time). Such defined 
throughput does not take into account the time taken for reading the very first block of the first message, 
message initialization, message finalization, and writing the last hash value to the output memory.  
The resource utilization in FPGAs is a vector, with coordinates specific to the given FPGA family, e.g. 

Resource UtilizationVirtex 5 = (#CLB slices, #BRAMs, #DSPs)                                        (1) 

Resource UtilizationStratix III = (#ALUTs, #memory_bits, #DSPs).                                       (2) 

In these formulas: #CLB_slices is the number of Configurable Logic Block slices, BRAM stands for 
Block RAM, DSP is a Digital Signal Processing unit, #ALUTs represents the number of Adaptive Look-
Up Tables, and #mem-bits is the number of bits stored in dedicated Altera FPGA memories. 

Taking into account that vectors cannot be easily compared to each other, we have decided to opt out 
of using any dedicated resources in the hash function implementations used for our comparison. Thus, all 
coordinates of our vectors, other than the first one have been forced (by choosing appropriate options of 
the synthesis and implementation tools) to be zero. This way, our resource utilization (further referred to 
as Area) is characterized using a single number, specific to the given family of FPGAs, namely 
#CLB_slices for Xilinx Virtex 5 and Virtex 6, #ALUTs in Stratix III and Stratix IV. 

We believe that the capability of using embedded resources should be treated as a measure of the 
algorithm flexibility, and should be investigated independently from this study. This issue is discussed in 
more detail in Section 7. 
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4. Investigated Hardware Architectures 
 
Investigated architectures are described in more detail in our earlier paper presented at CHES 2011. 
Additionally, full VHDL source codes and corresponding hierarchical block diagrams of majority of these 
architectures have been published at [1]. Below, we present only a short summary of major features of 
known to us high-speed and medium-speed hardware architectures of SHA-3 finalists. 

A starting point for our exploration is the basic iterative architecture, shown in Fig. 1a. This 
architecture is the most efficient (in terms of the throughput to area ratio) non-pipelined architecture of 
SHA-2, Groestl, JH, and Keccak. 

In order to reduce area necessary to implement a given hash algorithm, at the cost of decreasing its 
throughput, folded architectures can be used. These architectures can be employed only if a round of a 
hash function has a symmetric structure with respect to either horizontal or vertical axis (with input to a 
round shown at the top and output shown at the bottom of the round block), as illustrated in Fig. 1. 

In Fig. 1b, horizontal folding by a factor of two is demonstrated. We will denote this architecture by 
/2(h). In this architecture, a half of a round is implemented as combinational logic, and the entire round is 
executed using two clock cycles. As a result, the block processing time (and thus also throughput) stays 
approximately the same, and area decreases. These dependencies lead to the overall increase of the 
Throughput to Area ratio. In general, folding by a factor of k might be possible, and the corresponding 
architecture will be denoted by /k(h). Among the five finalists, the only candidate that can benefit 
substantially from horizontal folding is BLAKE. The round of BLAKE consists of two horizontal layers 
of identical G functions, separated only by a permutation. By implementing only one layer in 
combinational logic, horizontal folding by a factor of two can be easily achieved. Additionally, each G 
function has a very symmetric structure along the horizontal axis, and can be easily folded horizontally by 
a factor of 2. As a result, a folding factor of 4 can be achieved for the entire round. Other SHA-3 finalists 
do not demonstrate any similar symmetry.  

In Fig. 1c, we demonstrate vertical folding by a factor of 2. We will denote this folding by /2(v). In 
this architecture, the datapath width is reduced by a factor of two. As a result two clock cycles are 
required to complete a round. In the first clock cycle, only bits of the internal state affecting the first half 
of the round output are provided to the input of R/2. In the second clock cycle, the remaining bits of the 
internal state are processed. The first output is stored in an auxiliary register of the size of s/2 bits. This 
output is concatenated with the output from the second iteration to form a new internal state. The clock 
period of this architecture is approximately equal to the clock period of the basic iterative architecture. As 
a result, the block processing time, increases approximately by a factor of two compared to the basic 
architecture. The area  reduction is also  smaller than in case of horizontal folding, because of the need for 
an extra s/2-bit register and a multiplexer. As a result the throughput to area ratio is likely to go down. In 
general,  vertical  folding by  a factor  of k might be possible,  and  the corresponding architecture  will be 

 

                            
 
Fig. 1. Three hardware architectures of a hash function: a) basic iterative, x1, b) folded horizontally by a 

factor of 2, /2(h), c) folded vertically by a factor of 2, /2(v).  R – round, S1, S2 – selection functions. 
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denoted by /k(v). Out of five final SHA-3 candidates, BLAKE and Groestl are most suitable for vertical 
folding. JH can be folded, but the gain in area is not expected to be substantial, because the round of JH is 
very simple, and does not dominate the total area of the circuit. For Skein and Keccak, the internal round 
symmetry, necessary for implementation of vertical folding, is limited.  

For vertical folding with the factor k≥4 it is beneficial to store the internal state in memory, rather 
than in registers. The obtained throughput to area ratio can be substantially increased as a result of this 
change in the storage element. We will denote the obtained architectures as /k(v)-m. 

In order to increase circuit throughput for processing of a single message, unrolling can be used. In 
Fig. 2a, architecture with unrolling by a factor of two is demonstrated. The combinational logic of a round 
is replicated, so now two rounds are performed per clock cycle. Since the total number of clock cycles is 
reduced approximately by a factor of two, and the clock period increases by a factor less than two (due to 
optimizations on the boundaries of two rounds, and the smaller relative contributions of the multiplexer 
delay, the register delay, and the register setup time), the total throughput increases. Unfortunately, at the 
same time, the area of the circuit is likely to increase by a factor close to the unrolling factor. As a result, 
in most cases, the throughput to area ratio decreases substantially compared to the basic iterative 
architecture. As such, architectures with unrolling are typically used only when throughput for a single 
long message is of the utmost concern, and area is abundant.   

Nevertheless, there are exceptions to this rule. Unrolling can improve the throughput to area ratio 
when rounds used by an algorithm in subsequent iterations are not the same, or there is a potential for 
substantial delay reductions on the boundary between consecutive rounds. Among the five final SHA-3 
finalists, this situation happens only for Skein. As a result, the throughput to area ratio of Skein becomes 
optimum for one of the unrolled architectures. 

Further increase in the throughput and the throughput to area ratio of SHA-3 candidates is possible by 
using pipelined architectures. In order to take full advantage of the pipelined architectures multiple 
messages must be processed at the same time. Luckily, this is exactly the situation that appears most often 
in practical applications of hash functions. For example, in the most widespread Internet security 
protocols, such as IPSec, SSL, and WLAN (802.11), the inputs to a hash unit are packets. The maximum 
size of a packet for Internet is limited by so called Maximum Transmission Unit (MTU). The typical size 
of MTU for Ethernet based networks is 1500 bytes. The Maximum Transmission Unit for the Internet 
IPv4 path is even smaller, and set at 576 bytes. As a result, in a typical internet node, up to 80% of 
packets processed have the size of 576 bytes or less, and 100% of packets have sizes equal or smaller than 
1500 bytes. Such small sizes of packets mean that hundreds of packets could be easily buffered in the 
processing nodes, in the form of packet queues, without introducing any significant latency to the total 
packet travel time from the source to destination. Therefore, the capabilities for parallel processing 
(including pipelining) seem to be primarily limited by the total area of the hash unit, and not by the 
number of messages available in parallel. In this paper, we will assume that the number of messages 
available in parallel is large (at least 10), and we will look at the combined throughput for all available 
streams of data. 

The easiest way to implement pipelining in hash functions is to first unroll, and then introduce 
pipeline registers between adjacent rounds. The simplest case is the architecture that is two times 
unrolled, and has two pipeline stages, as shown in Fig. 2b. We will denote this architecture as x2-PPL2. 
The throughput to area ratio remains roughly the same, and may be either larger or smaller than in the 
basic iterative architecture, depending on a particular algorithm. The more challenging way of using 
pipelining is to introduce pipeline registers inside of a hash function round. The improvement in 
throughput compared to the basic iterative architecture is then equal (either exactly or at least 
approximately) to the ratio of the new clock frequency to the original clock frequency. Since the critical 
path is reduced, the increase in throughput is guaranteed, but its level depends on how well the critical 
path has been divided by pipeline registers into shorter paths with approximately equal delays. At the 
same time, the area of the circuit increases by the area of pipeline registers, plus any logic required for 
simultaneous processing of multiple streams of data.  The throughput to area  ratio may  increase,   but the  
improvement  is   not guaranteed   for  all  algorithms,  and   all  FPGA  families,   and  may  be   small  or  
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Fig. 2. Three hardware architectures of a hash function a) unrolled by a factor of 2, x2, b) unrolled by a 
factor of 2 with 2 pipeline stages, x2-PPL2, c) basic iterative with 2 pipeline stages, x1-PPL2. 

 
negative in case the basic iterative architecture operates already at the clock frequency close to the 
maximum clock frequency supported by a given FPGA family. 

The final alternative is architecture obtained by replicating the entire circuit multiple number of times. 
We call this architecture a multi-unit architecture, and we denote it by MUn, where n denotes the number 
of repetitions of the hash core. Obviously, in this architecture, throughput and area increase 
proportionally, and n messages are required to be present concurrently in order to take full advantage of 
the potential increase in throughput. A typical design approach would be to first find an architecture with 
the best throughput to area ratio, and then replicate it as many times as necessary in order to reach the 
desired throughput. 

The formulas for the block processing time and the throughput of all aforementioned architectures are 
summarized in Table 1. 
 
Table 1: Formulas for the time required to process a single message block, Tblock, and the Throughput, Tp, 
for all investigated architectures. Notation: b – block size, r – number of rounds, f – number of clock 
cycles required to finalize computations for a block (f = 0 for Keccak and Groestl (P+Q), f=1 for all 
remaining algorithms), k – folding factor or unrolling factor, n – number of pipeline stages, T – clock 
period. 
 

Notation Architecture Time required to 
process a single 
message block 

Throughput 

x1 Basic iterative Tblock= ( r + f ) ⋅ T Tp = b/Tblock 
/k Folded by a factor of k Tblock= ( k⋅r + f ) ⋅ T Tp = b/Tblock 
xk Unrolled by a factor of k Tblock= ( r/k + f ) ⋅ T Tp = b/Tblock 
x1-PPLn Basic iterative 

with n pipeline stages 
Tblock= ( n⋅r + f ) ⋅ T Tp = n⋅b/Tblock 

/k-PPLn Folded by a factor of k 
with n pipeline stages 

Tblock= ( n⋅k⋅r + f ) ⋅ T Tp = n⋅b/Tblock 

xk-PPLn Unrolled by a factor of k 
with n pipeline stages 

Tblock= ( n⋅r/k + f ) ⋅ T Tp = n⋅b/Tblock 

MUn Multi-unit architecture based 
on n repetitions of the basic 
iterative architecture 

Tblock= ( r + f ) ⋅ T Tp = n⋅b/Tblock 
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5. Design Methodology and Design Environment 
 
Our designs for the basic, folded, and unrolled architectures use the interface and the communication 
protocol proposed in [4,10]. Our designs for the pipelined architectures, use the interface and surrounding 
logic shown in Fig. 3. 

Input FIFOs serve as packet queues. Each FIFO communicates with the corresponding Serial-In 
Parallel-Out (SIPO) unit and the associated Finite State Machine 1 (FSM1). FSM1 is responsible for 
reading in the next block of data, using b/w clock cycles, possibly in parallel with the Datapath processing 
the previous block under the control of FSM2. Outputs corresponding to four independent packets are 
first stored in the corresponding Parallel-In Serial-Out Units, and then multiplexed to the output FIFO. 

All architectures have been modeled in VHDL-93. All VHDL codes have been thoroughly verified 
using a universal testbench, capable of testing an arbitrary hash function core. A special padding script 
was developed in Perl in order to pad messages included in the Known Answer Test (KAT) files 
distributed as a part of each candidate’s submission package.  

For synthesis and implementation, we have used tools developed by FPGA vendors themselves:  
• for Xilinx: Xilinx ISE Design Suite v. 13.1, including Xilinx XST, 
• for Altera: Quartus II v. 11.1 Subscription Edition Software. 

The generation of a large number of results and optimization of tool options was facilitated by an open 
source benchmarking environment, called ATHENa (Automated Tool for Hardware EvaluatioN) [1]. 

 

            
 

Fig. 3: The interface, high-level block diagram, and surrounding logic of the Hash Unit for the pipelined 
architecture with four pipeline stages. Notation: SIPO – Serial-In Parallel-Out unit, PISO – Parallel-In 
Serial-Out unit, w – input/output bus width, w=64 for all investigated algorithms, except SHA-2-256, 
where w=32. 
 
6. Results 
 
The results of our implementations are summarized in Figs. 4-8, and in Tables 2 and A.1. In Fig. 4, we 
present the detailed throughput vs. area graphs for all implemented architectures of the 256-bit variants of 
six investigated algorithms in Xilinx Virtex 5 FPGAs. 

For BLAKE (see Fig. 4a), the best non-pipelined architecture in terms of the throughput to area ratio 
is: /4(h)/4(v)-m, i.e., architecture with horizontal folding by a factor of 4, combined with vertical folding 
by a factor of 4, and internal state stored in memory. The best architecture overall is x1-PPL4, i.e., basic 
architecture with four pipeline stages. The good performance of the former of these two architectures is 
associated with the significant reduction of the complexity of the BLAKE PERMUTE function as a result 
of vertical folding by 4. The good performance of the latter is associated with the symmetric structure of 
the round and G function, which makes it easy to divide the datapath into four well-balanced pipeline 
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stages. The two less successful architectures include x1 and /2(h)-PPL4. These architectures are not 
included in our combined graphs shown in Figs. 5-8. 

For Groestl (see Fig. 4b), we consider two major architectures: a) parallel architecture, denoted (P+Q), 
in which Groestl permutations P and Q are implemented using two independent units, working in parallel, 
and b) quasi-pipeline architecture, denoted (P/Q), in which, the same unit is used to implement both P and 
Q, and the computations belonging to these two permutations are interleaved [20]. The details of the basic 
quasi-pipelined architecture of Groestl are described in [20, Section 9] and [10, Section 3.8]. In this study, 
we apply vertical folding and pipelining to both architectures. The best architecture overall appears to be 
the parallel architecture (P+Q) in the basic version, with two pipeline stages, x1-PPL2. Vertical folding 
by 2 provides quite substantial reduction in area, but at the price of a slightly greater reduction in 
throughput. An attempt to pipeline Groestl using 7 pipeline stages (x1-PPL7), using logic-only 
implementation of S-boxes, appeared to be rather unsuccessful. 

For JH (see Fig. 4c), we consider two major types of architectures: a) with round constants stored in 
memory, JH (MEM), and b) with round constants calculated on the fly, JH (OTF). Both approaches seem 
to result in a very similar performance for the basic iterative architectures, x1. Neither vertical folding nor 
pipelining seem to be efficient when applied directly to the basic architecture. Vertical folding by two, 
somewhat unexpectedly, increases area, and the basic architecture with two pipeline stages does not 
improve throughput. Both undesired effects can be tracked back to the simplicity of the main round. 
Folding does not reduce area, because of extra registers and multiplexers introduced to a very simple 
round. Pipelining does not increase throughput, because a simple basic round is hard to divide into two 
well balanced pipeline stages. As a result, the basic iterative architecture remains most efficient in terms 
of the throughput to area ratio. 

For Keccak (see Fig. 4d), only vertical folding by a factor of 8, with internal state stored in memory, 
leads to substantial reduction in area, at the cost of a significant reduction in throughput. Two pipeline 
stages increase throughput, but by a factor smaller than the increase in the circuit area.  

For Skein (see Fig. 4e), the unrolled by 4 architecture, x4, appears to be significantly more efficient 
than the basic architecture, x1. At the same time, unrolling by 8 does not give any additional 
improvement. The best results are obtained by first unrolling basic architecture by a factor of four, and 
then pipelining the obtained circuit using two pipeline stages. Five pipeline stages have been attempted as 
well because of an extra addition executed every fourth round, but did not improve the overall throughput 
to area ratio. 

For SHA-2 (see Fig. 4f), none of the discussed techniques applies. The implementation of this function 
is already small, so reducing area is not necessary. The best way to speed up this function is by using 
multiple independent units of SHA-2 working in parallel. We denote this architecture by MUn, where n 
denotes the number of hash units. 

The combined graphs for the 256-bit variants and the 512-bit variants of all algorithms, implemented 
using Xilinx Virtex 5 FPGAs, are presented in Figs. 5 and 6. Individual dots placed in regular intervals on 
the dashed lines represent multi-unit architectures. Algorithms can be ranked first in terms of the 
throughput to area ratio of their best architecture, as identified above. This is because this architecture can 
be easily replicated, allowing for processing n streams of data in parallel. Both throughput and area will 
increase by a factor of n.  

The secondary criterion is the area of the best architecture. The smaller the area, the denser is the graph 
representing possible locations of a given function on the throughput vs. area graph. 

The results for the 256-bit variants of hash functions, shown in Fig. 5, indicate that the order of the 
SHA-3 candidates in terms of throughput, for implementations using 1500 or more CLB slices is: 1) 
Keccak, 2) JH, 3) Groestl, 4) Skein, and 5) BLAKE. Keccak and JH clearly outperform SHA-2, while 
Groestl becomes faster only with more than about 3000 CLB slices. The results for the 512-bit variants of 
hash functions, shown in Fig. 6, are quite similar, with the exception that, JH performs almost equally 
well as Keccak (because of the decrease in the Keccak message block size from 1088 to 576 bits), Skein 
outperforms Groestl, and BLAKE is a distant fifth. 
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a)  b)  
 
 

c) d)  
 

e) f)  
 
Fig. 4. Throughput vs. Area graphs for multiple architectures of a) BLAKE-256, b) Groestl-256, c) JH-256,  
d) Keccak-256, e) Skein-256, and f) SHA-256, implemented in Xilinx Virtex 5 FPGAs. Notation: x1 – basic iterative 
architecture, /k(h) – horizontally folded by a factor of k, /k(v) - vertically folded by a factor of k, /k(v)-m - vertically 
folded by a factor of k with internal state stored in memory, xk – unrolled by a factor of k, PPLn – pipelined with n 
pipeline stages, (P+Q) – parallel architecture of Groestl, P/Q – quasi-pipelined architecture of Groestl, MEM – 
architecture of JH with round constants stored in memory, OTF – architecture of JH with round constants calculated on 
the fly. 
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Fig. 5. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit variants of 

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs. 
 
 

 
Fig. 6. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit variants of 

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs. 



	   10	  

 
Fig. 7. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit 

variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs. 
 

 
 

Fig. 8. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit 
variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs. 

 
The performance for Altera devices, shown in Figs. 7 and 8, is somewhat different. For the 256-bit 

versions of the algorithms, Keccak is the only function that outperforms SHA-2 in terms of the 
throughput to area ratio. JH is second in ranking, with two architectures offering the similar ratio as SHA-
2. BLAKE, Groestl, and Skein are in tie with each, with Groestl being somewhat disadvantaged by 
approximately twice as large area of its most efficient architecture. For the 512-bit versions of the 
algorithms (see Fig. 8), Keccak and JH outperform SHA-2, Skein is in tie with SHA-2, Groestl and 
BLAKE fall significantly behind the current standard. 

The numerical results for all our implementations are summarized in Tables 2 and A.1. The best values 
of the throughput to area ratios and the best architectures for each hash function are listed in bold in these 
tables.
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Table 2: Results for 256-bit variants of the Round 3 SHA-3 candidates and SHA-2, implemented using all 
investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV 
from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of the 
throughput to area ratios and the best architectures for each hash function are listed in bold. 
 

Arch Virtex 5 Virtex 6 Stratix III Stratix IV 
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-256 
/4(h)/4(v)-‐m	   276	   204	   1.35	   399	   171	   2.34	   370	   924	   0.40	   399	   935	   0.43	  
/4(h)	   1726	   1437	   1.20	   1882	   886	   2.12	   1695	   3093	   0.55	   1735	   3085	   0.56	  
/2(h)	   2308	   1771	   1.30	   2226	   1257	   1.77	   2157	   3553	   0.61	   2337	   3543	   0.66	  
x1	   2533	   2279	   1.11	   2416	   1711	   1.41	   2181	   4620	   0.47	   2319	   4618	   0.50	  
/2(h)-‐PPL2	   3506	   2136	   1.64	   3178	   1630	   1.95	   3131	   4570	   0.69	   3409	   4567	   0.75	  
/2(h)-‐PPL4	   4633	   3226	   1.44	   4807	   2407	   2.00	   5205	   5039	   1.03	   5467	   5042	   1.08	  
x1-‐PPL2	   4761	   2976	   1.60	   4768	   2111	   2.26	   4162	   5436	   0.77	   4429	   5423	   0.82	  
x1-PPL4	   7547	   3495	   2.16	   8056	   2530	   3.18	   7583	   6267	   1.21	   8063	   6271	   1.29	  

Groestl-256 
/8(v)	  (P+Q)	   1237	   1124	   1.10	   1371	   936	   1.46	   1240	   3306	   0.38	   1173	   3288	   0.36	  
/4(v)	  (P+Q)	   2215	   1208	   1.83	   2850	   1072	   2.66	   2576	   4528	   0.57	   2366	   4402	   0.54	  
/2(v)	  (P+Q)	   4254	   1734	   2.45	   4850	   1548	   3.13	   5028	   7444	   0.68	   4387	   6895	   0.64	  
x1	  (P+Q)	   7214	   2906	   2.48	   8754	   2395	   3.65	   9572	   11193	   0.86	   8962	   10961	   0.82	  
x1-PPL2	  (P+Q)	   12479	   2971	   4.20	   13410	   2873	   4.67	   13166	   12531	   1.05	   12290	   12203	   1.01	  
x1-PPL4	  (P+Q)	   16353	   4177	   3.91	   16213	   3597	   4.51	   16198	   12885	   1.26	   16141	   12933	   1.25	  

/8(v)	  (P/Q)	   951	   981	   0.97	   1057	   705	   1.50	   1009	   2346	   0.43	   976	   2342	   0.43	  
/4(v)	  (P/Q)	   1907	   993	   1.92	   2381	   859	   2.77	   1998	   2919	   0.68	   1837	   2902	   0.63	  
/2(v)	  (P/Q)	   3721	   1195	   3.11	   4201	   898	   4.68	   3818	   3914	   0.98	   3701	   3906	   0.95	  
x1	  (P/Q)	   6117	   1795	   3.41	   7220	   1870	   3.86	   6604	   6460	   1.02	   6269	   6421	   0.98	  

JH-256 
/8(v)-‐m	  (MEM)	   138	   306	   0.45	   157	   226	   0.69	   133	   1865	   0.07	   118	   1849	   0.06	  
/2(v)	  (MEM) 2094	   1009	   2.08	   2327	   944	   2.46	   2131	   3379	   0.63	   2138	   3368	   0.63	  
x1	  (MEM) 4955	   982	   5.05	   5412	   849	   6.37	   5276	   3221	   1.64	   4759	   3210	   1.48	  
x2	  (MEM) 6149	   1489	   4.13	   6904	   1335	   5.17	   6418	   5584	   1.15	   6128	   5542	   1.11	  
x1-‐PPL2	  (MEM) 4711	   1842	   2.56	   5202	   1320	   3.94	   5463	   4263	   1.28	   5439	   4259	   1.28	  
x2-PPL2	  (MEM) 8289	   2312	   3.59	   9284	   2050	   4.53	   10116	   6294	   1.61	   10116	   6294	   1.61	  
x2-‐PPL4	  (MEM) 8526	   3085	   2.76	   9154	   2131	   4.30	   9927	   6892	   1.44	   9994	   6883	   1.45	  
/2(v)	  (OTF) 2181	   1120	   1.95	   1993	   845	   2.36	   2084	   3473	   0.60	   2035	   3538	   0.58	  
x1	  (OTF) 4840	   971	   4.98	   5255	   917	   5.73	   5071	   3388	   1.50	   4912	   3385	   1.45	  
x2	  (OTF) 6196	   1640	   3.78	   7046	   1493	   4.72	   6359	   6121	   1.04	   5817	   5993	   0.97	  

Keccak-256 
/8(v)-‐m	   870	   344	   2.53	   1183	   365	   3.24	   879	   2398	   0.37	   821	   2395	   0.34	  
x1 13337	   1369	   9.74	   11839	   1086	   10.90	   15493	   3531	   4.39	   16104	   3471	   4.64	  
x1-PPL2 16121	   1950	   8.27	   18803	   1474	   12.76	   19971	   4810	   4.15	   21184	   4294	   4.93	  
x2-‐PPL2 16651	   2352	   7.08	   N/A N/A	   N/A	   25283	   7107	   3.56	   25291	   6523	   3.88	  
x2-‐PPL4 26690	   3714	   7.19	   29825	   2748	   10.85	   35780	   8806	   4.06	   38451	   8553	   4.50	  

Skein-256 
x1 1179	   1025	   1.15	   1330	   858	   1.55	   1115	   3005	   0.37	   1226	   3003	   0.41	  
x4 3023	   1218	   2.48	   3373	   1005	   3.36	   2475	   3943	   0.63	   2592	   3936	   0.66	  
x8 2890	   1492	   1.94	   3276	   1283	   2.55	   3161	   5432	   0.58	   3161	   5463	   0.58	  
x4-PPL2 5338	   1858	   2.87	   6212	   1628	   3.82	   4273	   4423	   0.97	   4709	   4446	   1.06	  
x4-PPL5 6819	   4130	   1.65	   7669	   3126	   2.45	   6974	   5941	   1.17	   7675	   5925	   1.30	  
x8-‐PPL10 N/A N/A	   N/A	   10978	   5844	   1.88	   11741	   11163	   1.05	   11792	   10992	   1.07	  

SHA-256 

x1 1401	   396	   3.54	   1634	   239	   6.83	   1656	   959	   1.73	   1798	   959	   1.87	  
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7. Influence of Assumptions on the Results of Comparison 
 
In order to resolve any possible doubts, regarding the influence of assumptions on ranking of five final 
SHA-3 candidates, below we investigate the impact of two important assumptions we have made in this 
study: 1) assumption that all our hash cores include padding unit, and b) assumption that no embedded 
resources, such as DSP Units or Block Memories, are used in our FPGA implementations. Both issues 
have been studied independently by other members of our group [19,21]. Below, we summarize the 
results of these investigations. 

The effect of the padding unit on the performance of selected non-pipelined architectures of 5 Round 3 
SHA-3 candidates in four FPGA families has been summarized in Table A.2. Based on this table, the 
largest decrease in the throughput to area ratio does not exceed 18%. This decrease depends on the FPGA 
family, and is in the range 0-10% for Virtex 5, 0-14% for Virtex 6, 0-18% for Stratix III, and 4-12% for 
Stratix IV. These variations do not affect the ranking of candidates as determined in Section 6. 

The influence of embedded resources on performance of all 14 Round 2 candidates has been studied in 
[19]. This study was then narrowed to 5 finalists implemented using the most efficient non-pipelined 
architecture without padding unit. None of the final candidates can take substantial advantage of DSP 
units, because none of them uses multiplication. In both Virtex 5 and Stratix III, BLAKE and Groestl can 
take advantage of Block Memories. BLAKE requires memories for the implementation of the PERMUTE 
operation, and Groestl for the AES-based operations. The numerical effect of using embedded resources 
in Xilinx Virtex 5 and Altera Stratix III is summarized in Table A.3. The throughput either decreased, 
stayed constant, or increased by less than 10% for majority of SHA-3 finalists. The only exception was 
Groestl implemented using Stratix III, where throughput increased by about 21%. The amount of 
reconfigurable logic resources stayed within 12% of the original value for JH, Keccak, and Skein. The 
reduction for Groestl and BLAKE was much more significant, and stayed in the range 41-62%. It should 
be stressed that this reduction has been accomplished at the expense of substantial usage of embedded 
memories. For example in Virtex 5, BLAKE occupied 13 out of 64 and Groestl 50 out of 64 18-kbit 
Block RAMs of the respective FPGA device. The corresponding architectures of BLAKE and Groestl are 
shown in Figs. A.1 and A.2. The affect on the ratio of throughput to the amount of reconfigurable 
resources is negligible for JH, Keccak, and Skein, and quite substantial, between 60 and 220% for 
BLAKE and Groestl. It should be stressed however, that this improvement can be taken advantage of only 
if in the given system-on-chip including hash functions, none of the other components of the system relies 
heavily on block memories. If this assumption holds, and we treat the amount of reconfigurable logic 
resources (#CLB_slices and #ALUTs, respectively) as a sole representation of area, then the ranking of 
finalists based on the throughput to area ratio changes as shown in Table A.4. As a result of using 
embedded resources in Virtex 5 and Stratix III FPGAs, Groestl jumps from the third position to the 
second place ahead of JH, and BLAKE moves from the fifth position to the fourth place ahead of Skein. 
 
8. Correlation between FPGA results and ASIC results 
 
The number of hardware architectures of SHA-3 candidates implemented in ASICs to date is very small 
compared to the number of architectures implemented in FPGAs. Typically, only the best non-pipelined 
architectures for the 256-bit variants of the SHA-3 finalists are reported [6,7,9,20]. At the same time, 
multiple applications use ASICs as a primary way of implementing cryptographic transformations, and 
this trend is likely to continue in the future. Therefore, it is very interesting to see, whether there exist any 
strong correlation between results obtained for the ASIC and FPGA implementations of the same 
architectures. In our experiment, performed in collaboration with the group from ETH Zurich, we have 
implemented selected architectures for all SHA-3 candidates and SHA-2 using standard-cell CMOS 65nm 
UMC ASIC technology (UMC65LL) offered through Europractice MPW services, and using a 65 nm 
high-performance Altera FPGA family Stratix III. The selected architectures included the following non-
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pipelined architectures: basic iterative architectures, x1, for Keccak and SHA-2, basic iterative 
architecture with round constants computed on the fly, x1 (OTF), for JH, basic iterative parallel 
architecture of Groestl (P+Q), horizontally folded two times architecture of BLAKE, /2(h), and the 
unrolled 4 times architecture of Skein, x4. All architectures have been designed for the 256-bit variants of 
the functions, without padding units, and with wide input and output interface (512 or 1088 bits at the 
input and 256 bits at the output). Exactly the same VHDL source codes have been synthesized, mapped, 
placed and routed using both technologies. The results, normalized to the results for SHA-2, are presented 
in Fig. 9. A very good correlation between normalized throughput and normalized area in both 
technologies have been observed. Ranking in terms of throughput is identical in both technologies. In 
terms of area the biggest difference is a relatively smaller area of BLAKE in ASIC technology. In Stratix 
III FPGAs, JH and BLAKE have almost the same area, in ASIC BLAKE is about 20% smaller than JH.  

The biggest difference appears in terms of the throughput to area ratio, where BLAKE moves from 
the 4th position in tie with Skein in Stratix III to the 3rd position, ahead of Groestl for ASIC. Overall 
correlation is however very good and indicates that evaluations using Altera FPGAs are likely to give 
similar results to the evaluations using ASICs built using equivalent technology. Interestingly, similar 
comparison using Xilinx Virtex 5 FPGAs results in much worse correlation. 

 
a)         b) 

 
c)         d) 

 
 
Fig. 9. Correlation between results for 65nm ASIC and 65nm Altera Stratix III FPGA. Normalized 
throughput vs. normalized area for a) ASIC, b) Stratix III FPGA. Normalized throughput to area ratio for 
c) ASIC, d) Stratix III FPGA. 
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9. Conclusions 
 
In this paper, we have performed a systematic investigation of high-speed hardware architectures for the 
five final SHA-3 candidates. The investigated architectures were based on the concepts of the basic 
iterative architecture, horizontal folding, vertical folding, unrolling, pipelining, and parallel processing 
using multiple independent units. Each architecture was implemented using four high-performance FPGA 
families: Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Based on the 
obtained results, we have identified the most efficient hardware architecture for each of the investigated 
algorithm, based on the best throughput to area ratio. 

In case of four out of five candidates (all except JH), the most efficient architecture for at least two out 
of four FPGA families appeared to be a pipelined architecture. The optimum number of pipeline stages 
was specific to both the algorithm and FPGA family, as shown in Tables 2 and A.1. 

The results for all investigated functions, and the most successful architectures have been summarized 
using the comprehensive throughput vs. area graphs. These graphs (and the corresponding tables) have 
revealed that Keccak is the only candidate that consistently outperforms SHA-2 for all considered FPGA 
families and two hash function variants (with 256-bit and 512-bit output). The only drawback of this 
function appears to be its limited suitability for folding. 

JH performed better than SHA-2 in 3 out of 4 scenarios. It was outperformed by SHA-2 only for the 
256-bit function variants implemented using Altera FPGAs. Interestingly, JH is most efficient in its basic 
iterative architecture, and is not very suitable for either folding or inner-round pipelining.  

Groestl outperformed SHA-2 in only one scenario, for the 256-bit variants implemented using Virtex 
5. However this advantage was reached only for the relatively large area of about 3000 CLB slices. 
Although Groestl appeared to be very suitable for vertical folding, the very nature of this technique 
caused that the decrease in area was accompanied by an even greater decrease in speed. Additionally, 
Groestl can take advantage of block memories, and can share resources with AES, when both algorithms 
are implemented on the same chip. 

Skein is the only finalist that can substantially benefit from unrolling. It is also the fastest for the 
pipelined versions of the 4x unrolled architecture, and is the only algorithm that can be pipelined up to 10 
times. It performs particularly well compared to other algorithms for the 512-bit variants of hash 
functions implemented using both Xilinx and Altera FPGAs. 

 BLAKE is the algorithm with the highest flexibility, and the largest number of potential architectures. 
It can be easily folded horizontally and vertically by factors of two and four. It can also be easily 
pipelined even in the folded architectures. It is also the only algorithm that has a relatively efficient 
architecture that is smaller than the basic iterative architecture of SHA-2. Finally, BLAKE, similarly to 
Groestl, can benefit substantially from using embedded block memories of both Xilinx and Altera 
FPGAs. 

Our future work will include experimental testing of all developed high-speed architectures of the 
SHA-3 finalists, using high-performance FPGA boards based on Xilinx and Altera FPGAs, equipped with 
high-speed communication interface, such as PCI Express. 
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Appendix A 
Table A.1: Results for the 512-bit variants of the Round 3 SHA-3 candidates and SHA-2. Notation: Tp – 
throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of the throughput to area ratios and the best 
architectures are given in bold. 

Arch Virtex 5 Virtex 6 Stratix III Stratix IV 
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-512 
/4(h)/4(v)-m	   560	   386	   1.45	   613	   309	   1.98	   491	   1680	   0.29	   543	   1676	   0.32	  
/4(h)	   2300	   2840	   0.81	   2646	   1584	   1.67	   2186	   5891	   0.37	   2442	   5885	   0.42	  
/2(h)	   3264	   3435	   0.95	   3478	   2610	   1.33	   2928	   6977	   0.42	   3318	   6971	   0.48	  
x1	   N/A N/A	   N/A	   N/A N/A	   N/A	   2965	   9033	   0.33	   3323	   9024	   0.37	  
/2(h)-‐PPL2	   4841	   4515	   1.07	   4478	   2879	   1.56	   3954	   8969	   0.44	   4742	   8959	   0.53	  
/2(h)-‐PPL4	   6171	   5794	   1.07	   6915	   4575	   1.51	   5991	   9684	   0.62	   7859	   9694	   0.81	  
x1-‐PPL2	   6364	   5674	   1.12	   6471	   4571	   1.42	   5660	   10625	   0.53	   6351	   10615	   0.60	  
x1-PPL4	   9567	   7497	   1.28	   10706	   5267	   2.03	   9980	   12074	   0.83	   11075	   12082	   0.92	  

Groestl-512 
/8(v)	  (P+Q)	   1556	   2251	   0.69	   1726	   1773	   0.97	   1677	   6549	   0.26	   1614	   6510	   0.25	  
/4(v)	  (P+Q)	   3112	   2393	   1.30	   3230	   2113	   1.53	   3447	   8727	   0.39	   3277	   8750	   0.37	  
/2(v)	  (P+Q)	   5119	   3289	   1.56	   5793	   2971	   1.95	   6595	   14318	   0.46	   6265	   14207	   0.44	  
x1	  (P+Q)	   9582	   5797	   1.65	   11857	   5234	   2.27	   13061	   22062	   0.59	   11936	   21902	   0.54	  
x1-‐PPL2	  (P+Q)	   18213	   10263	   1.77	   18998	   7528	   2.52	   16900	   24292	   0.70	   16114	   24241	   0.66	  
x1-PPL4	  (P+Q)	   N/A N/A	   N/A	   N/A N/A	   N/A	   21158	   25515	   0.83	   20580	   25407	   0.81	  

/8(v)	  (P/Q)	   1211	   1722	   0.70	   1326	   1358	   0.98	   1335	   4598	   0.29	   1307	   4592	   0.28	  
/4(v)	  (P/Q)	   2573	   2036	   1.26	   2772	   1529	   1.81	   2700	   5786	   0.47	   2596	   5770	   0.45	  
/2(v)	  (P/Q)	   4816	   2336	   2.06	   5319	   1761	   3.02	   5262	   7763	   0.68	   5262	   7763	   0.68	  
x1	  (P/Q)	   7686	   3853	   1.99	   8375	   3630	   2.31	   8669	   12450	   0.70	   8504	   12368	   0.69	  

JH-512 
/8(v)-‐m	  (MEM)	   138	   307	   0.45	   154	   228	   0.68	   128	   1817	   0.07	   119	   1851	   0.06	  
/2(v)	  (MEM) 2052	   1055	   1.95	   2491	   944	   2.64	   2224	   3664	   0.61	   2175	   3660	   0.59	  
x1	  (MEM) 4882	   1037	   4.71	   5825	   931	   6.26	   5011	   3288	   1.52	   5139	   3294	   1.56	  
x2	  (MEM) 6203	   1587	   3.91	   6859	   1377	   4.98	   6630	   5768	   1.15	   6305	   5786	   1.09	  
x1-‐PPL2	  (MEM) 4635	   1990	   2.33	   5060	   1534	   3.30	   5361	   4521	   1.19	   5319	   4521	   1.18	  
x2-PPL2	  (MEM) 8183	   2494	   3.28	   9439	   2128	   4.44	   9881	   6339	   1.56	   9665	   6309	   1.53	  
x2-‐PPL4	  (MEM) 8107	   3408	   2.38	   8237	   2288	   3.60	   9456	   7427	   1.27	   8806	   7392	   1.19	  
/2(v)	  (OTF) 2024	   1127	   1.80	   2104	   954	   2.21	   2107	   3680	   0.57	   1982	   3669	   0.54	  
x1	  (OTF) 4686	   992	   4.72	   5181	   939	   5.52	   5181	   3557	   1.46	   5043	   3605	   1.40	  
x2	  (OTF) 6413	   1870	   3.43	   7128	   1501	   4.75	   6268	   6276	   1.00	   6032	   6314	   0.96	  

Keccak-512 
/8(v)-‐m	   495	   344	   1.44	   579	   320	   1.81	   500	   2398	   0.21	   467	   2395	   0.19	  
x1 7612	   1320	   5.77	   7208	   1061	   6.79	   8526	   3471	   2.46	   7825	   3467	   2.26	  
x1-PPL2 9306	   1720	   5.41	   9619	   1468	   6.55	   11215	   4294	   2.61	   10816	   4295	   2.52	  
x2-‐PPL2 9915	   2297	   4.32	   N/A	   N/A	   N/A	   13389	   6523	   2.05	   12984	   6519	   1.99	  
x2-‐PPL4 12935	   3387	   3.82	   15661	   2539	   6.17	   20356	   8553	   2.38	   19300	   8549	   2.26	  

Skein-512 
x1 1201	   1069	   1.12	   1441	   983	   1.47	   1135	   3072	   0.37	   1229	   3073	   0.40	  
x4 3084	   1418	   2.17	   3462	   1114	   3.11	   2438	   4006	   0.61	   2736	   4015	   0.68	  
x8 2832	   1577	   1.80	   3573	   1373	   2.60	   3121	   5589	   0.56	   3322	   5507	   0.60	  
x4-PPL2 5378	   2026	   2.65	   5943	   1702	   3.49	   4271	   4705	   0.91	   4682	   4683	   1.00	  
x4-PPL5 N/A N/A	   N/A	   7071	   3486	   2.03	   6670	   6199	   1.08	   6972	   6185	   1.13	  
x8-‐PPL10 N/A N/A	   N/A	   12176	   6145	   1.98	   11063	   11205	   0.99	   10802	   11204	   0.96	  

SHA-512 

x1 2013	   798	   2.52	   2422	   553	   4.38	   2128	   1995	   1.07	   2378	   1996	   1.19	  
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Table A.2: The effect of the padding unit on the performance of 5 Round 3 SHA-3 candidates in four 
FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Notation: 
Tp – throughput, A – area, Tp/A – Throughput to Area Ratio, Δ [%] – relative change in the Throughput, 
Area, and Throughput to Area ratio as a result of adding padding unit to the hash unit. The relative change 
in the throughput to area ratio has been marked in bold. 

 
Arch Virtex 5 Virtex 6 Stratix III Stratix IV 

 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-256 
/2(h) 2308 1771 1.30 2226 1257 1.77 2157 3553 0.61 2337 3543 0.66 
/2(h) - PAD 2266 1860 1.22 2363 1391 1.70 2206 3660 0.60 2316 3680 0.63 

Δ  [%] -‐1.83 5.03 -6.53 6.18 10.66 -4.04 2.25 3.01 -0.74 -‐0.90 3.87 -4.59 
Groestl-256 (P/Q) 

x1 6117 1795 3.41 7220 1870 3.86 6604 6460 1.02 6269 6421 0.98 
x1 - PAD 6572 2020 3.25 7071 1884 3.75 6160 6466 0.95 6033 6415 0.94 

Δ  [%] 7.44 12.53 -4.53 -‐2.06 0.75 -2.79 -‐6.72 0.09 -6.81 -‐3.76 -‐0.09 -3.67 
JH-256 (MEM) 

x1 4955 982 5.05 5412 849 6.37 5276 3221 1.64 4759 3210 1.48 
x1 - PAD 4543 1001 4.54 5086 918 5.54 5024 3383 1.49 4815 3415 1.41 

Δ  [%] -‐8.32 1.93 -10.06 -‐6.02 8.13 -13.09 -‐4.77 5.03 -9.33 1.17 6.39 -4.90 
Keccak-256 

x1 13337 1369 9.74 11839 1086 10.90 15493 3531 4.39 16104 3471 4.64 
x1- PAD 12745 1375 9.27 12451 1147 10.86 14624 4060 3.60 15167 3734 4.06 

Δ  [%] -‐4.44 0.44 -4.86 5.16 5.62 -0.43 -‐5.61 14.98 -17.91 -‐5.82 7.58 -12.45 
Skein-256 

x4 3023 1218 2.48 3373 1005 3.36 2475 3943 0.63 2592 3936 0.66 
x4 - PAD 3127 1245 2.51 2957 1026 2.88 2495 3960 0.63 2647 3970 0.67 

Δ  [%] 3.43 2.22 1.19 -‐12.33 2.09 -14.13 0.77 0.43 0.34 2.10 0.86 1.23 
 
 
Table A.3. Change in the results between the logic-only implementation (without DSP units and Block 
RAMs) and the implementation using these embedded resources. The respective columns represent: 
ΔThroughput [%] - Relative Improvement in Throughput, ΔReconfigurable Logic [%] - Relative 
Reduction in the amount of Reconfigurable Logic, ΔTp/Reconfigurable Logic [%] - Relative 
Improvement in Throughput/Reconfigurable Logic Ratio. N/A - indicates that an investigated architecture 
with embedded resources did not improve any of the performance measures. All results presented in this 
table (unlike the results in the rest of the paper) have been obtained for architectures without padding 
units, using Xilinx ISE 12.3, and Altera Quartus II 10.0. 
 

Δ  Throughput  
[%] 

Δ  Reconfigurable logic 
[%] 

ΔTp/Reconfigurable logic 
[%] 

 
Algorithm 

Virtex 5 Stratix III Virtex 5 Stratix III Virtex 5 Stratix III 
BLAKE -17.4 -15.7 57.3 47.6 93.7 61.0 
Groestl -3.8 20.9 41.5 61.8 64.6 216.2 
JH -10.0 2.8 -5.1 11.3 -14.4 15.9 
Keccak 8.1 0.6 -9.3 -0.5 -1.1 0.1 
Skein -20.0 N/A 2.4 N/A -18.0 N/A 
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Fig. A.1. BLAKE. Transformation of the datapath from the logic-only implementation to the 
implementation using embedded resources. 
 

 
Fig. A.2. Groestl. Transformation of the datapath from the S-Box based logic-only implementation to the 
T-Box based implementation using embedded resources. 
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Table A.4. Change in the throughput to area ratio between the logic-only implementation (without DSP 
units and Block RAMs) and the implementation using these embedded resources. Value given in bold 
represents the best result for a given algorithm and FPGA family, and the improvement column represents 
a relative improvement compared to the basic architecture achieved using the best of the two 
architectures. All results presented in this table (unlike the results in the rest of the paper) have been 
obtained for architectures without padding units, using Xilinx ISE 12.3, and Altera Quartus II 10.0. 
 

Virtex 5 Stratix III Algorithm 
& 

Architecture 
Logic-only With 

embedded 
resources 

Improvement Logic-only With 
embedded 
resources 

Improvement 

BLAKE 
/2(h) 

1.32 2.56 94% 0.59 0.95 61% 

Groestl 
x1 (P/Q) 

3.28 5.41 65% 0.79 2.49 216% 

JH 
x1 (MEM) 

4.67 4.00 0% 1.37 1.59 16% 

Keccak 
x1 

10.26 10.15 0% 3.28 3.28 0% 

Skein 
x4 

2.28 1.87 0% 0.62 0.26 0% 

 
 


