
	 1	

Comprehensive Evaluation of High-Speed and Medium-Speed
Implementations of Five SHA-3 Finalists

Using Xilinx and Altera FPGAs

Kris Gaj, Ekawat Homsirikamol, Marcin Rogawski, Rabia Shahid, and Malik Umar Sharif
George Mason University

{kgaj, ehomsiri, mrogawsk, rshahid, msharif2}@gmu.edu

Abstract. In this paper we present a comprehensive comparison of all Round 3 SHA-3
candidates and the current standard SHA-2 from the point of view of hardware performance in
modern FPGAs. Each algorithm is implemented using multiple architectures based on the
concepts of iteration, folding, unrolling, pipelining, and circuit replication. Trade-offs between
speed and area are investigated, and the best architecture from the point of view of the
throughput to area ratio is identified. Finally, all algorithms are ranked based on their overall
performance, and the characteristic features of each algorithm important from the point of view
of its implementation in hardware are identified.

Keywords: benchmarking, hash functions, SHA-3, hardware, FPGA.

1. Introduction

Performance in hardware is one of the major criteria used in the SHA-3 competition [17]. Typically, this
performance is evaluated using two major technologies: Field Programmable Gate Arrays (FPGAs) and
Application Specific Integrated Circuits (ASICs). Comparison using FPGAs offers several important
advantages, such as short development time, accurate post place & route results, existence of tools for
optimum choice of program options and automated collection of a large number of results [1], and
relatively small number of vendors and device families that dominate the market. As a result, our FPGA
performance evaluation covers significantly broader design space than any ASIC comparison we are
aware of. In particular, in this paper, each of the SHA-3 finalists is implemented in both basic variants,
with a 256-bit and a 512-bit output, and each variant is implemented using from 5 to 10 different
hardware architectures based on the concepts of iteration, folding, unrolling, pipelining, and circuit
replication. Each architecture is equipped with a realistic FIFO-based interface with a modest pin
requirement, and the capability for simultaneous processing of the current message block, reading the
next message block, and writing the previously computed hash value to the output FIFO [4,10,11]. Unlike
any ASIC implementations, and majority of earlier reported FPGA implementations, our SHA-3
candidate cores are equipped with full padding units, capable of processing any messages ending on a
boundary of a byte. All VHDL source codes have been developed by two primary designers, closely
collaborating with each other, which substantially minimizes the potential influence of different designer
skills. Majority of source codes and the corresponding block diagrams have already been published on
the web and made available for public scrutiny [1]. The remaining source codes will be made publicly
available by the time of the conference. All cores have been implemented and characterized using four
modern high-performance FPGA families from two major vendors, Xilinx and Altera. All implementation
results have been optimized and generated using ATHENa (Automated Tool for Hardware Evaluation)
[1]. The details of all 600+ results are available in the ATHENa database [1], where they can be
interactively accessed, reviewed, ranked, searched for, and compared to one another. For each set of
results, ATHENa database holds also a set of replication scripts and configuration files that can be used
by a third party to efficiently reproduce all results without using ATHENa. Finally, we also demonstrate
in this paper that selected FPGA results show very good correlation with the corresponding ASIC results
obtained using a typical standard-cell library based on the similar 65nm CMOS technology.

	 2	

2. Previous work

Previous results on comparison of Round 2 SHA-3 candidates in hardware are summarized in [18]. These
results are classified into four major categories, based on the technology (FPGA vs. ASIC), and the
optimization target (High-Speed vs. Low-Area). The previous results most relevant to the subject of this
paper belong to the category of High-Speed Implementations in FPGAs. The most comprehensive results
belonging to this category were reported by Baldwin et al. [3], Gaj et al. [4], Homsirikamol et al. [10],
and Matsuo et al. [15]. All these groups have published results for all 14 Round 2 candidates. Majority of
published results concern 256-bit variants of the candidates, implemented using Xilinx Virtex 5 FPGAs.
In [10], results for 256-bit and 512-bit variants of all algorithms, implemented using 10 FPGA families
from Xilinx and Altera are discussed. Additionally, pipelined implementations of three Round 2 SHA-3
candidates have been investigated in [2]. In our earlier paper, published at CHES 2011 [11], we
investigated the throughput vs. area trade-offs in implementations of SHA-2 and five SHA-3 finalists. In
this paper, we present results obtained by extending each architecture with a padding unit, and optimizing
selected pipelined implementations of the SHA-3 candidates.

Three comprehensive comparisons of low-area implementations of Round 3 SHA-3 candidates have
been presented in [12,13,14]. The most comprehensive studies of ASIC implementations of the Round 3
SHA-3 candidates are presented in [7,8]. These studies follow previous investigation of Round 2 SHA-3
candidates described in [6,9,20].

All results obtained based on the Round 2 specifications of SHA-3 candidates carry without any
changes for Keccak and Skein. The specifications of BLAKE, Groestl, and JH have been tweaked at the
start of Round 3, in January 2011. The throughput of the Round 3 BLAKE and JH can be calculated
based on the results from Round 2 by decreasing it by a factor proportional to the increase in the number
of rounds. The area of these implementations will remain practically the same. The change in the
throughput and area of Groestl is much more difficult to approximate, as demonstrated in [16].

3. Performance Metrics

Three major performance metrics used in our study are throughput, area, and throughput to area ratio.
Throughput is understood as the throughput for long messages, or cumulative throughput for a large
number of small messages (where processing and input/output functions overlap in time). Such defined
throughput does not take into account the time taken for reading the very first block of the first message,
message initialization, message finalization, and writing the last hash value to the output memory.
The resource utilization in FPGAs is a vector, with coordinates specific to the given FPGA family, e.g.

Resource UtilizationVirtex 5 = (#CLB slices, #BRAMs, #DSPs) (1)

Resource UtilizationStratix III = (#ALUTs, #memory_bits, #DSPs). (2)

In these formulas: #CLB_slices is the number of Configurable Logic Block slices, BRAM stands for
Block RAM, DSP is a Digital Signal Processing unit, #ALUTs represents the number of Adaptive Look-
Up Tables, and #mem-bits is the number of bits stored in dedicated Altera FPGA memories.

Taking into account that vectors cannot be easily compared to each other, we have decided to opt out
of using any dedicated resources in the hash function implementations used for our comparison. Thus, all
coordinates of our vectors, other than the first one have been forced (by choosing appropriate options of
the synthesis and implementation tools) to be zero. This way, our resource utilization (further referred to
as Area) is characterized using a single number, specific to the given family of FPGAs, namely
#CLB_slices for Xilinx Virtex 5 and Virtex 6, #ALUTs in Stratix III and Stratix IV.

We believe that the capability of using embedded resources should be treated as a measure of the
algorithm flexibility, and should be investigated independently from this study. This issue is discussed in
more detail in Section 7.

	 3	

4. Investigated Hardware Architectures

Investigated architectures are described in more detail in our earlier paper presented at CHES 2011.
Additionally, full VHDL source codes and corresponding hierarchical block diagrams of majority of these
architectures have been published at [1]. Below, we present only a short summary of major features of
known to us high-speed and medium-speed hardware architectures of SHA-3 finalists.

A starting point for our exploration is the basic iterative architecture, shown in Fig. 1a. This
architecture is the most efficient (in terms of the throughput to area ratio) non-pipelined architecture of
SHA-2, Groestl, JH, and Keccak.

In order to reduce area necessary to implement a given hash algorithm, at the cost of decreasing its
throughput, folded architectures can be used. These architectures can be employed only if a round of a
hash function has a symmetric structure with respect to either horizontal or vertical axis (with input to a
round shown at the top and output shown at the bottom of the round block), as illustrated in Fig. 1.

In Fig. 1b, horizontal folding by a factor of two is demonstrated. We will denote this architecture by
/2(h). In this architecture, a half of a round is implemented as combinational logic, and the entire round is
executed using two clock cycles. As a result, the block processing time (and thus also throughput) stays
approximately the same, and area decreases. These dependencies lead to the overall increase of the
Throughput to Area ratio. In general, folding by a factor of k might be possible, and the corresponding
architecture will be denoted by /k(h). Among the five finalists, the only candidate that can benefit
substantially from horizontal folding is BLAKE. The round of BLAKE consists of two horizontal layers
of identical G functions, separated only by a permutation. By implementing only one layer in
combinational logic, horizontal folding by a factor of two can be easily achieved. Additionally, each G
function has a very symmetric structure along the horizontal axis, and can be easily folded horizontally by
a factor of 2. As a result, a folding factor of 4 can be achieved for the entire round. Other SHA-3 finalists
do not demonstrate any similar symmetry.

In Fig. 1c, we demonstrate vertical folding by a factor of 2. We will denote this folding by /2(v). In
this architecture, the datapath width is reduced by a factor of two. As a result two clock cycles are
required to complete a round. In the first clock cycle, only bits of the internal state affecting the first half
of the round output are provided to the input of R/2. In the second clock cycle, the remaining bits of the
internal state are processed. The first output is stored in an auxiliary register of the size of s/2 bits. This
output is concatenated with the output from the second iteration to form a new internal state. The clock
period of this architecture is approximately equal to the clock period of the basic iterative architecture. As
a result, the block processing time, increases approximately by a factor of two compared to the basic
architecture. The area reduction is also smaller than in case of horizontal folding, because of the need for
an extra s/2-bit register and a multiplexer. As a result the throughput to area ratio is likely to go down. In
general, vertical folding by a factor of k might be possible, and the corresponding architecture will be

Fig. 1. Three hardware architectures of a hash function: a) basic iterative, x1, b) folded horizontally by a

factor of 2, /2(h), c) folded vertically by a factor of 2, /2(v). R – round, S1, S2 – selection functions.

	 4	

denoted by /k(v). Out of five final SHA-3 candidates, BLAKE and Groestl are most suitable for vertical
folding. JH can be folded, but the gain in area is not expected to be substantial, because the round of JH is
very simple, and does not dominate the total area of the circuit. For Skein and Keccak, the internal round
symmetry, necessary for implementation of vertical folding, is limited.

For vertical folding with the factor k≥4 it is beneficial to store the internal state in memory, rather
than in registers. The obtained throughput to area ratio can be substantially increased as a result of this
change in the storage element. We will denote the obtained architectures as /k(v)-m.

In order to increase circuit throughput for processing of a single message, unrolling can be used. In
Fig. 2a, architecture with unrolling by a factor of two is demonstrated. The combinational logic of a round
is replicated, so now two rounds are performed per clock cycle. Since the total number of clock cycles is
reduced approximately by a factor of two, and the clock period increases by a factor less than two (due to
optimizations on the boundaries of two rounds, and the smaller relative contributions of the multiplexer
delay, the register delay, and the register setup time), the total throughput increases. Unfortunately, at the
same time, the area of the circuit is likely to increase by a factor close to the unrolling factor. As a result,
in most cases, the throughput to area ratio decreases substantially compared to the basic iterative
architecture. As such, architectures with unrolling are typically used only when throughput for a single
long message is of the utmost concern, and area is abundant.

Nevertheless, there are exceptions to this rule. Unrolling can improve the throughput to area ratio
when rounds used by an algorithm in subsequent iterations are not the same, or there is a potential for
substantial delay reductions on the boundary between consecutive rounds. Among the five final SHA-3
finalists, this situation happens only for Skein. As a result, the throughput to area ratio of Skein becomes
optimum for one of the unrolled architectures.

Further increase in the throughput and the throughput to area ratio of SHA-3 candidates is possible by
using pipelined architectures. In order to take full advantage of the pipelined architectures multiple
messages must be processed at the same time. Luckily, this is exactly the situation that appears most often
in practical applications of hash functions. For example, in the most widespread Internet security
protocols, such as IPSec, SSL, and WLAN (802.11), the inputs to a hash unit are packets. The maximum
size of a packet for Internet is limited by so called Maximum Transmission Unit (MTU). The typical size
of MTU for Ethernet based networks is 1500 bytes. The Maximum Transmission Unit for the Internet
IPv4 path is even smaller, and set at 576 bytes. As a result, in a typical internet node, up to 80% of
packets processed have the size of 576 bytes or less, and 100% of packets have sizes equal or smaller than
1500 bytes. Such small sizes of packets mean that hundreds of packets could be easily buffered in the
processing nodes, in the form of packet queues, without introducing any significant latency to the total
packet travel time from the source to destination. Therefore, the capabilities for parallel processing
(including pipelining) seem to be primarily limited by the total area of the hash unit, and not by the
number of messages available in parallel. In this paper, we will assume that the number of messages
available in parallel is large (at least 10), and we will look at the combined throughput for all available
streams of data.

The easiest way to implement pipelining in hash functions is to first unroll, and then introduce
pipeline registers between adjacent rounds. The simplest case is the architecture that is two times
unrolled, and has two pipeline stages, as shown in Fig. 2b. We will denote this architecture as x2-PPL2.
The throughput to area ratio remains roughly the same, and may be either larger or smaller than in the
basic iterative architecture, depending on a particular algorithm. The more challenging way of using
pipelining is to introduce pipeline registers inside of a hash function round. The improvement in
throughput compared to the basic iterative architecture is then equal (either exactly or at least
approximately) to the ratio of the new clock frequency to the original clock frequency. Since the critical
path is reduced, the increase in throughput is guaranteed, but its level depends on how well the critical
path has been divided by pipeline registers into shorter paths with approximately equal delays. At the
same time, the area of the circuit increases by the area of pipeline registers, plus any logic required for
simultaneous processing of multiple streams of data. The throughput to area ratio may increase, but the
improvement is not guaranteed for all algorithms, and all FPGA families, and may be small or

	 5	

Fig. 2. Three hardware architectures of a hash function a) unrolled by a factor of 2, x2, b) unrolled by a
factor of 2 with 2 pipeline stages, x2-PPL2, c) basic iterative with 2 pipeline stages, x1-PPL2.

negative in case the basic iterative architecture operates already at the clock frequency close to the
maximum clock frequency supported by a given FPGA family.

The final alternative is architecture obtained by replicating the entire circuit multiple number of times.
We call this architecture a multi-unit architecture, and we denote it by MUn, where n denotes the number
of repetitions of the hash core. Obviously, in this architecture, throughput and area increase
proportionally, and n messages are required to be present concurrently in order to take full advantage of
the potential increase in throughput. A typical design approach would be to first find an architecture with
the best throughput to area ratio, and then replicate it as many times as necessary in order to reach the
desired throughput.

The formulas for the block processing time and the throughput of all aforementioned architectures are
summarized in Table 1.

Table 1: Formulas for the time required to process a single message block, Tblock, and the Throughput, Tp,
for all investigated architectures. Notation: b – block size, r – number of rounds, f – number of clock
cycles required to finalize computations for a block (f = 0 for Keccak and Groestl (P+Q), f=1 for all
remaining algorithms), k – folding factor or unrolling factor, n – number of pipeline stages, T – clock
period.

Notation Architecture Time required to
process a single
message block

Throughput

x1 Basic iterative Tblock= (r + f) ⋅ T Tp = b/Tblock
/k Folded by a factor of k Tblock= (k⋅r + f) ⋅ T Tp = b/Tblock
xk Unrolled by a factor of k Tblock= (r/k + f) ⋅ T Tp = b/Tblock
x1-PPLn Basic iterative

with n pipeline stages
Tblock= (n⋅r + f) ⋅ T Tp = n⋅b/Tblock

/k-PPLn Folded by a factor of k
with n pipeline stages

Tblock= (n⋅k⋅r + f) ⋅ T Tp = n⋅b/Tblock

xk-PPLn Unrolled by a factor of k
with n pipeline stages

Tblock= (n⋅r/k + f) ⋅ T Tp = n⋅b/Tblock

MUn Multi-unit architecture based
on n repetitions of the basic
iterative architecture

Tblock= (r + f) ⋅ T Tp = n⋅b/Tblock

	 6	

5. Design Methodology and Design Environment

Our designs for the basic, folded, and unrolled architectures use the interface and the communication
protocol proposed in [4,10]. Our designs for the pipelined architectures, use the interface and surrounding
logic shown in Fig. 3.

Input FIFOs serve as packet queues. Each FIFO communicates with the corresponding Serial-In
Parallel-Out (SIPO) unit and the associated Finite State Machine 1 (FSM1). FSM1 is responsible for
reading in the next block of data, using b/w clock cycles, possibly in parallel with the Datapath processing
the previous block under the control of FSM2. Outputs corresponding to four independent packets are
first stored in the corresponding Parallel-In Serial-Out Units, and then multiplexed to the output FIFO.

All architectures have been modeled in VHDL-93. All VHDL codes have been thoroughly verified
using a universal testbench, capable of testing an arbitrary hash function core. A special padding script
was developed in Perl in order to pad messages included in the Known Answer Test (KAT) files
distributed as a part of each candidate’s submission package.

For synthesis and implementation, we have used tools developed by FPGA vendors themselves:
• for Xilinx: Xilinx ISE Design Suite v. 13.1, including Xilinx XST,
• for Altera: Quartus II v. 11.1 Subscription Edition Software.

The generation of a large number of results and optimization of tool options was facilitated by an open
source benchmarking environment, called ATHENa (Automated Tool for Hardware EvaluatioN) [1].

Fig. 3: The interface, high-level block diagram, and surrounding logic of the Hash Unit for the pipelined
architecture with four pipeline stages. Notation: SIPO – Serial-In Parallel-Out unit, PISO – Parallel-In
Serial-Out unit, w – input/output bus width, w=64 for all investigated algorithms, except SHA-2-256,
where w=32.

6. Results

The results of our implementations are summarized in Figs. 4-8, and in Tables 2 and A.1. In Fig. 4, we
present the detailed throughput vs. area graphs for all implemented architectures of the 256-bit variants of
six investigated algorithms in Xilinx Virtex 5 FPGAs.

For BLAKE (see Fig. 4a), the best non-pipelined architecture in terms of the throughput to area ratio
is: /4(h)/4(v)-m, i.e., architecture with horizontal folding by a factor of 4, combined with vertical folding
by a factor of 4, and internal state stored in memory. The best architecture overall is x1-PPL4, i.e., basic
architecture with four pipeline stages. The good performance of the former of these two architectures is
associated with the significant reduction of the complexity of the BLAKE PERMUTE function as a result
of vertical folding by 4. The good performance of the latter is associated with the symmetric structure of
the round and G function, which makes it easy to divide the datapath into four well-balanced pipeline

	 7	

stages. The two less successful architectures include x1 and /2(h)-PPL4. These architectures are not
included in our combined graphs shown in Figs. 5-8.

For Groestl (see Fig. 4b), we consider two major architectures: a) parallel architecture, denoted (P+Q),
in which Groestl permutations P and Q are implemented using two independent units, working in parallel,
and b) quasi-pipeline architecture, denoted (P/Q), in which, the same unit is used to implement both P and
Q, and the computations belonging to these two permutations are interleaved [20]. The details of the basic
quasi-pipelined architecture of Groestl are described in [20, Section 9] and [10, Section 3.8]. In this study,
we apply vertical folding and pipelining to both architectures. The best architecture overall appears to be
the parallel architecture (P+Q) in the basic version, with two pipeline stages, x1-PPL2. Vertical folding
by 2 provides quite substantial reduction in area, but at the price of a slightly greater reduction in
throughput. An attempt to pipeline Groestl using 7 pipeline stages (x1-PPL7), using logic-only
implementation of S-boxes, appeared to be rather unsuccessful.

For JH (see Fig. 4c), we consider two major types of architectures: a) with round constants stored in
memory, JH (MEM), and b) with round constants calculated on the fly, JH (OTF). Both approaches seem
to result in a very similar performance for the basic iterative architectures, x1. Neither vertical folding nor
pipelining seem to be efficient when applied directly to the basic architecture. Vertical folding by two,
somewhat unexpectedly, increases area, and the basic architecture with two pipeline stages does not
improve throughput. Both undesired effects can be tracked back to the simplicity of the main round.
Folding does not reduce area, because of extra registers and multiplexers introduced to a very simple
round. Pipelining does not increase throughput, because a simple basic round is hard to divide into two
well balanced pipeline stages. As a result, the basic iterative architecture remains most efficient in terms
of the throughput to area ratio.

For Keccak (see Fig. 4d), only vertical folding by a factor of 8, with internal state stored in memory,
leads to substantial reduction in area, at the cost of a significant reduction in throughput. Two pipeline
stages increase throughput, but by a factor smaller than the increase in the circuit area.

For Skein (see Fig. 4e), the unrolled by 4 architecture, x4, appears to be significantly more efficient
than the basic architecture, x1. At the same time, unrolling by 8 does not give any additional
improvement. The best results are obtained by first unrolling basic architecture by a factor of four, and
then pipelining the obtained circuit using two pipeline stages. Five pipeline stages have been attempted as
well because of an extra addition executed every fourth round, but did not improve the overall throughput
to area ratio.

For SHA-2 (see Fig. 4f), none of the discussed techniques applies. The implementation of this function
is already small, so reducing area is not necessary. The best way to speed up this function is by using
multiple independent units of SHA-2 working in parallel. We denote this architecture by MUn, where n
denotes the number of hash units.

The combined graphs for the 256-bit variants and the 512-bit variants of all algorithms, implemented
using Xilinx Virtex 5 FPGAs, are presented in Figs. 5 and 6. Individual dots placed in regular intervals on
the dashed lines represent multi-unit architectures. Algorithms can be ranked first in terms of the
throughput to area ratio of their best architecture, as identified above. This is because this architecture can
be easily replicated, allowing for processing n streams of data in parallel. Both throughput and area will
increase by a factor of n.

The secondary criterion is the area of the best architecture. The smaller the area, the denser is the graph
representing possible locations of a given function on the throughput vs. area graph.

The results for the 256-bit variants of hash functions, shown in Fig. 5, indicate that the order of the
SHA-3 candidates in terms of throughput, for implementations using 1500 or more CLB slices is: 1)
Keccak, 2) JH, 3) Groestl, 4) Skein, and 5) BLAKE. Keccak and JH clearly outperform SHA-2, while
Groestl becomes faster only with more than about 3000 CLB slices. The results for the 512-bit variants of
hash functions, shown in Fig. 6, are quite similar, with the exception that, JH performs almost equally
well as Keccak (because of the decrease in the Keccak message block size from 1088 to 576 bits), Skein
outperforms Groestl, and BLAKE is a distant fifth.

	 8	

a) b)

c) d)

e) f)

Fig. 4. Throughput vs. Area graphs for multiple architectures of a) BLAKE-256, b) Groestl-256, c) JH-256,
d) Keccak-256, e) Skein-256, and f) SHA-256, implemented in Xilinx Virtex 5 FPGAs. Notation: x1 – basic iterative
architecture, /k(h) – horizontally folded by a factor of k, /k(v) - vertically folded by a factor of k, /k(v)-m - vertically
folded by a factor of k with internal state stored in memory, xk – unrolled by a factor of k, PPLn – pipelined with n
pipeline stages, (P+Q) – parallel architecture of Groestl, P/Q – quasi-pipelined architecture of Groestl, MEM –
architecture of JH with round constants stored in memory, OTF – architecture of JH with round constants calculated on
the fly.

	 9	

Fig. 5. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit variants of

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs.

Fig. 6. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit variants of

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs.

	 10	

Fig. 7. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit

variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs.

Fig. 8. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit
variants of BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs.

The performance for Altera devices, shown in Figs. 7 and 8, is somewhat different. For the 256-bit

versions of the algorithms, Keccak is the only function that outperforms SHA-2 in terms of the
throughput to area ratio. JH is second in ranking, with two architectures offering the similar ratio as SHA-
2. BLAKE, Groestl, and Skein are in tie with each, with Groestl being somewhat disadvantaged by
approximately twice as large area of its most efficient architecture. For the 512-bit versions of the
algorithms (see Fig. 8), Keccak and JH outperform SHA-2, Skein is in tie with SHA-2, Groestl and
BLAKE fall significantly behind the current standard.

The numerical results for all our implementations are summarized in Tables 2 and A.1. The best values
of the throughput to area ratios and the best architectures for each hash function are listed in bold in these
tables.

	 11	

Table 2: Results for 256-bit variants of the Round 3 SHA-3 candidates and SHA-2, implemented using all
investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV
from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of the
throughput to area ratios and the best architectures for each hash function are listed in bold.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256
/4(h)/4(v)-‐m	 276	 204	 1.35	 399	 171	 2.34	 370	 924	 0.40	 399	 935	 0.43	
/4(h)	 1726	 1437	 1.20	 1882	 886	 2.12	 1695	 3093	 0.55	 1735	 3085	 0.56	
/2(h)	 2308	 1771	 1.30	 2226	 1257	 1.77	 2157	 3553	 0.61	 2337	 3543	 0.66	
x1	 2533	 2279	 1.11	 2416	 1711	 1.41	 2181	 4620	 0.47	 2319	 4618	 0.50	
/2(h)-‐PPL2	 3506	 2136	 1.64	 3178	 1630	 1.95	 3131	 4570	 0.69	 3409	 4567	 0.75	
/2(h)-‐PPL4	 4633	 3226	 1.44	 4807	 2407	 2.00	 5205	 5039	 1.03	 5467	 5042	 1.08	
x1-‐PPL2	 4761	 2976	 1.60	 4768	 2111	 2.26	 4162	 5436	 0.77	 4429	 5423	 0.82	
x1-PPL4	 7547	 3495	 2.16	 8056	 2530	 3.18	 7583	 6267	 1.21	 8063	 6271	 1.29	

Groestl-256
/8(v)	 (P+Q)	 1237	 1124	 1.10	 1371	 936	 1.46	 1240	 3306	 0.38	 1173	 3288	 0.36	
/4(v)	 (P+Q)	 2215	 1208	 1.83	 2850	 1072	 2.66	 2576	 4528	 0.57	 2366	 4402	 0.54	
/2(v)	 (P+Q)	 4254	 1734	 2.45	 4850	 1548	 3.13	 5028	 7444	 0.68	 4387	 6895	 0.64	
x1	 (P+Q)	 7214	 2906	 2.48	 8754	 2395	 3.65	 9572	 11193	 0.86	 8962	 10961	 0.82	
x1-PPL2	 (P+Q)	 12479	 2971	 4.20	 13410	 2873	 4.67	 13166	 12531	 1.05	 12290	 12203	 1.01	
x1-PPL4	 (P+Q)	 16353	 4177	 3.91	 16213	 3597	 4.51	 16198	 12885	 1.26	 16141	 12933	 1.25	

/8(v)	 (P/Q)	 951	 981	 0.97	 1057	 705	 1.50	 1009	 2346	 0.43	 976	 2342	 0.43	
/4(v)	 (P/Q)	 1907	 993	 1.92	 2381	 859	 2.77	 1998	 2919	 0.68	 1837	 2902	 0.63	
/2(v)	 (P/Q)	 3721	 1195	 3.11	 4201	 898	 4.68	 3818	 3914	 0.98	 3701	 3906	 0.95	
x1	 (P/Q)	 6117	 1795	 3.41	 7220	 1870	 3.86	 6604	 6460	 1.02	 6269	 6421	 0.98	

JH-256
/8(v)-‐m	 (MEM)	 138	 306	 0.45	 157	 226	 0.69	 133	 1865	 0.07	 118	 1849	 0.06	
/2(v)	 (MEM) 2094	 1009	 2.08	 2327	 944	 2.46	 2131	 3379	 0.63	 2138	 3368	 0.63	
x1	 (MEM) 4955	 982	 5.05	 5412	 849	 6.37	 5276	 3221	 1.64	 4759	 3210	 1.48	
x2	 (MEM) 6149	 1489	 4.13	 6904	 1335	 5.17	 6418	 5584	 1.15	 6128	 5542	 1.11	
x1-‐PPL2	 (MEM) 4711	 1842	 2.56	 5202	 1320	 3.94	 5463	 4263	 1.28	 5439	 4259	 1.28	
x2-PPL2	 (MEM) 8289	 2312	 3.59	 9284	 2050	 4.53	 10116	 6294	 1.61	 10116	 6294	 1.61	
x2-‐PPL4	 (MEM) 8526	 3085	 2.76	 9154	 2131	 4.30	 9927	 6892	 1.44	 9994	 6883	 1.45	
/2(v)	 (OTF) 2181	 1120	 1.95	 1993	 845	 2.36	 2084	 3473	 0.60	 2035	 3538	 0.58	
x1	 (OTF) 4840	 971	 4.98	 5255	 917	 5.73	 5071	 3388	 1.50	 4912	 3385	 1.45	
x2	 (OTF) 6196	 1640	 3.78	 7046	 1493	 4.72	 6359	 6121	 1.04	 5817	 5993	 0.97	

Keccak-256
/8(v)-‐m	 870	 344	 2.53	 1183	 365	 3.24	 879	 2398	 0.37	 821	 2395	 0.34	
x1 13337	 1369	 9.74	 11839	 1086	 10.90	 15493	 3531	 4.39	 16104	 3471	 4.64	
x1-PPL2 16121	 1950	 8.27	 18803	 1474	 12.76	 19971	 4810	 4.15	 21184	 4294	 4.93	
x2-‐PPL2 16651	 2352	 7.08	 N/A N/A	 N/A	 25283	 7107	 3.56	 25291	 6523	 3.88	
x2-‐PPL4 26690	 3714	 7.19	 29825	 2748	 10.85	 35780	 8806	 4.06	 38451	 8553	 4.50	

Skein-256
x1 1179	 1025	 1.15	 1330	 858	 1.55	 1115	 3005	 0.37	 1226	 3003	 0.41	
x4 3023	 1218	 2.48	 3373	 1005	 3.36	 2475	 3943	 0.63	 2592	 3936	 0.66	
x8 2890	 1492	 1.94	 3276	 1283	 2.55	 3161	 5432	 0.58	 3161	 5463	 0.58	
x4-PPL2 5338	 1858	 2.87	 6212	 1628	 3.82	 4273	 4423	 0.97	 4709	 4446	 1.06	
x4-PPL5 6819	 4130	 1.65	 7669	 3126	 2.45	 6974	 5941	 1.17	 7675	 5925	 1.30	
x8-‐PPL10 N/A N/A	 N/A	 10978	 5844	 1.88	 11741	 11163	 1.05	 11792	 10992	 1.07	

SHA-256

x1 1401	 396	 3.54	 1634	 239	 6.83	 1656	 959	 1.73	 1798	 959	 1.87	

	 12	

7. Influence of Assumptions on the Results of Comparison

In order to resolve any possible doubts, regarding the influence of assumptions on ranking of five final
SHA-3 candidates, below we investigate the impact of two important assumptions we have made in this
study: 1) assumption that all our hash cores include padding unit, and b) assumption that no embedded
resources, such as DSP Units or Block Memories, are used in our FPGA implementations. Both issues
have been studied independently by other members of our group [19,21]. Below, we summarize the
results of these investigations.

The effect of the padding unit on the performance of selected non-pipelined architectures of 5 Round 3
SHA-3 candidates in four FPGA families has been summarized in Table A.2. Based on this table, the
largest decrease in the throughput to area ratio does not exceed 18%. This decrease depends on the FPGA
family, and is in the range 0-10% for Virtex 5, 0-14% for Virtex 6, 0-18% for Stratix III, and 4-12% for
Stratix IV. These variations do not affect the ranking of candidates as determined in Section 6.

The influence of embedded resources on performance of all 14 Round 2 candidates has been studied in
[19]. This study was then narrowed to 5 finalists implemented using the most efficient non-pipelined
architecture without padding unit. None of the final candidates can take substantial advantage of DSP
units, because none of them uses multiplication. In both Virtex 5 and Stratix III, BLAKE and Groestl can
take advantage of Block Memories. BLAKE requires memories for the implementation of the PERMUTE
operation, and Groestl for the AES-based operations. The numerical effect of using embedded resources
in Xilinx Virtex 5 and Altera Stratix III is summarized in Table A.3. The throughput either decreased,
stayed constant, or increased by less than 10% for majority of SHA-3 finalists. The only exception was
Groestl implemented using Stratix III, where throughput increased by about 21%. The amount of
reconfigurable logic resources stayed within 12% of the original value for JH, Keccak, and Skein. The
reduction for Groestl and BLAKE was much more significant, and stayed in the range 41-62%. It should
be stressed that this reduction has been accomplished at the expense of substantial usage of embedded
memories. For example in Virtex 5, BLAKE occupied 13 out of 64 and Groestl 50 out of 64 18-kbit
Block RAMs of the respective FPGA device. The corresponding architectures of BLAKE and Groestl are
shown in Figs. A.1 and A.2. The affect on the ratio of throughput to the amount of reconfigurable
resources is negligible for JH, Keccak, and Skein, and quite substantial, between 60 and 220% for
BLAKE and Groestl. It should be stressed however, that this improvement can be taken advantage of only
if in the given system-on-chip including hash functions, none of the other components of the system relies
heavily on block memories. If this assumption holds, and we treat the amount of reconfigurable logic
resources (#CLB_slices and #ALUTs, respectively) as a sole representation of area, then the ranking of
finalists based on the throughput to area ratio changes as shown in Table A.4. As a result of using
embedded resources in Virtex 5 and Stratix III FPGAs, Groestl jumps from the third position to the
second place ahead of JH, and BLAKE moves from the fifth position to the fourth place ahead of Skein.

8. Correlation between FPGA results and ASIC results

The number of hardware architectures of SHA-3 candidates implemented in ASICs to date is very small
compared to the number of architectures implemented in FPGAs. Typically, only the best non-pipelined
architectures for the 256-bit variants of the SHA-3 finalists are reported [6,7,9,20]. At the same time,
multiple applications use ASICs as a primary way of implementing cryptographic transformations, and
this trend is likely to continue in the future. Therefore, it is very interesting to see, whether there exist any
strong correlation between results obtained for the ASIC and FPGA implementations of the same
architectures. In our experiment, performed in collaboration with the group from ETH Zurich, we have
implemented selected architectures for all SHA-3 candidates and SHA-2 using standard-cell CMOS 65nm
UMC ASIC technology (UMC65LL) offered through Europractice MPW services, and using a 65 nm
high-performance Altera FPGA family Stratix III. The selected architectures included the following non-

	 13	

pipelined architectures: basic iterative architectures, x1, for Keccak and SHA-2, basic iterative
architecture with round constants computed on the fly, x1 (OTF), for JH, basic iterative parallel
architecture of Groestl (P+Q), horizontally folded two times architecture of BLAKE, /2(h), and the
unrolled 4 times architecture of Skein, x4. All architectures have been designed for the 256-bit variants of
the functions, without padding units, and with wide input and output interface (512 or 1088 bits at the
input and 256 bits at the output). Exactly the same VHDL source codes have been synthesized, mapped,
placed and routed using both technologies. The results, normalized to the results for SHA-2, are presented
in Fig. 9. A very good correlation between normalized throughput and normalized area in both
technologies have been observed. Ranking in terms of throughput is identical in both technologies. In
terms of area the biggest difference is a relatively smaller area of BLAKE in ASIC technology. In Stratix
III FPGAs, JH and BLAKE have almost the same area, in ASIC BLAKE is about 20% smaller than JH.

The biggest difference appears in terms of the throughput to area ratio, where BLAKE moves from
the 4th position in tie with Skein in Stratix III to the 3rd position, ahead of Groestl for ASIC. Overall
correlation is however very good and indicates that evaluations using Altera FPGAs are likely to give
similar results to the evaluations using ASICs built using equivalent technology. Interestingly, similar
comparison using Xilinx Virtex 5 FPGAs results in much worse correlation.

a) b)

c) d)

Fig. 9. Correlation between results for 65nm ASIC and 65nm Altera Stratix III FPGA. Normalized
throughput vs. normalized area for a) ASIC, b) Stratix III FPGA. Normalized throughput to area ratio for
c) ASIC, d) Stratix III FPGA.

	 14	

9. Conclusions

In this paper, we have performed a systematic investigation of high-speed hardware architectures for the
five final SHA-3 candidates. The investigated architectures were based on the concepts of the basic
iterative architecture, horizontal folding, vertical folding, unrolling, pipelining, and parallel processing
using multiple independent units. Each architecture was implemented using four high-performance FPGA
families: Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Based on the
obtained results, we have identified the most efficient hardware architecture for each of the investigated
algorithm, based on the best throughput to area ratio.

In case of four out of five candidates (all except JH), the most efficient architecture for at least two out
of four FPGA families appeared to be a pipelined architecture. The optimum number of pipeline stages
was specific to both the algorithm and FPGA family, as shown in Tables 2 and A.1.

The results for all investigated functions, and the most successful architectures have been summarized
using the comprehensive throughput vs. area graphs. These graphs (and the corresponding tables) have
revealed that Keccak is the only candidate that consistently outperforms SHA-2 for all considered FPGA
families and two hash function variants (with 256-bit and 512-bit output). The only drawback of this
function appears to be its limited suitability for folding.

JH performed better than SHA-2 in 3 out of 4 scenarios. It was outperformed by SHA-2 only for the
256-bit function variants implemented using Altera FPGAs. Interestingly, JH is most efficient in its basic
iterative architecture, and is not very suitable for either folding or inner-round pipelining.

Groestl outperformed SHA-2 in only one scenario, for the 256-bit variants implemented using Virtex
5. However this advantage was reached only for the relatively large area of about 3000 CLB slices.
Although Groestl appeared to be very suitable for vertical folding, the very nature of this technique
caused that the decrease in area was accompanied by an even greater decrease in speed. Additionally,
Groestl can take advantage of block memories, and can share resources with AES, when both algorithms
are implemented on the same chip.

Skein is the only finalist that can substantially benefit from unrolling. It is also the fastest for the
pipelined versions of the 4x unrolled architecture, and is the only algorithm that can be pipelined up to 10
times. It performs particularly well compared to other algorithms for the 512-bit variants of hash
functions implemented using both Xilinx and Altera FPGAs.

 BLAKE is the algorithm with the highest flexibility, and the largest number of potential architectures.
It can be easily folded horizontally and vertically by factors of two and four. It can also be easily
pipelined even in the folded architectures. It is also the only algorithm that has a relatively efficient
architecture that is smaller than the basic iterative architecture of SHA-2. Finally, BLAKE, similarly to
Groestl, can benefit substantially from using embedded block memories of both Xilinx and Altera
FPGAs.

Our future work will include experimental testing of all developed high-speed architectures of the
SHA-3 finalists, using high-performance FPGA boards based on Xilinx and Altera FPGAs, equipped with
high-speed communication interface, such as PCI Express.

Acknowledgments
The authors would like to thank Frank Gürkaynak and other members of the Microelectronics Designs
Center at ETH Zurich for providing us with the post-layout results of ASIC implementations of GMU
cores. We also thank Ambarish Vyas for preliminary results regarding hash cores with padding units, and
Rajesh Velegalati for extensive help with multiple ATHENa runs.

	 15	

References:
[1] ATHENa Project Website, http://cryptography.gmu.edu/athena/.
[2] A. Akin, A. Aysu, O.C. Ulusel, and E. Savas, “Efficient Hardware Implementation of High Throughput SHA-3

Candidates Keccak, Luffa and Blue Midnight Wish for Single- and Multi-Message Hashing,” The Second SHA-
3 Candidate Conference, Aug. 23-24, 2010.

[3] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill and W.P. Marnane, “FPGA Implementations
of the Round Two SHA-3 Candidates,” The Second SHA-3 Candidate Conference, Aug. 23-24, 2010.

[4] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehensive Methodology for Comparing Hardware
Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs,” Proc. Cryptographic Hardware and
Embedded Systems workshop, CHES 2010, Santa Barbara, Aug. 2010, pp. 264-278.

[5] K. Gaj, J.P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, B.Y. Brewster, “ATHENa – Automated Tool
for Hardware EvaluatioN: Toward fair and comprehensive benchmarking of cryptographic hardware using
FPGAs,” 20th International Conference on Field Programmable Logic and Applications, Milano, Italy, Aug.
31st - Sep. 2nd, 2010.

[6] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “Fair and Comprehensive Performance Evaluation of 14
Second Round SHA-3 ASIC Implementations,” The Second SHA-3 Candidate Conference, Aug. 23-24, 2010.

[7] X. Guo, M. Srivistav, S. Huang, D. Ganta, M. Henry, L. Nazhandali, and P. Schaumont, "Pre-silicon
Characterization of NIST SHA-3 Final Round Candidates", 14th Euromicro Conference on Digital System
Design Architectures, Methods and Tools, DSD 2011, Oulu, Finland, Aug. 31-Sep. 2, 2011.

[8] F. K. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller, M. Rogawski, H. Kaeslin, and J.-P. Kaps,
“Lessons Learned from Designing a 65nm ASIC for Evaluating Third Round SHA-3 Candidates,” submission
to the 3rd SHA-3 Candidate Conference, Washington D.C., March 2012.

[9] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller and F.K. Gurkaynak, “Developing a Hardware
Evaluation Method for SHA-3 Candidates,” Proc. Cryptographic Hardware and Embedded Systems workshop,
CHES 2010, Santa Barbara, Aug. 2010, pp. 248-263.

[10] E. Homsirikamol, M. Rogawski, and K. Gaj, "Comparing Hardware Performance of Fourteen Round Two
SHA-3 Candidates Using FPGAs," Cryptology ePrint Archive: Report 2010/445.

[11] E. Homsirikamol, M. Rogawski, and K. Gaj, "Throughput vs. Area Trade-offs in High-Speed Architectures of
Five Round 3 SHA-3 Candidates Implemented Using Xilinx and Altera FPGAs," LNCS 6917, Cryptographic
Hardware and Embedded Systems workshop, CHES 2011, Nara, Japan, Sep. 28-Oct. 1, pp. 491-506.

[12] B. Jungk and J. Apfelbeck, "Area-Efficient FPGA Implementations of the SHA-3 Finalists," 2011 International
Conference on ReConFigurable Computing and FPGAs, ReConFig 2011, Cancun, Mexico, Nov. 30-Dec. 2,
2011.

[13] J.-P. Kaps, P. Yalla, K.K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, and J. Pham, "Lightweight
Implementations of SHA-3 Candidates on FPGAs," 12th International Conference on Cryptology, Indocrypt
2011, Chennai, Dec. 11-14, 2011.

[14] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. Meurice de Dormale, F.-X. Standaert,
"Compact FPGA Implementations of the Five SHA-3 Finalists," 10th Smart Card Research and Advanced
Application Conference, CARDIS 2011, Leuven, Belgium, Sep. 14-16, 2011.

[15] S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama, and K. Ota, “How Can We
Conduct "Fair and Consistent" Hardware Evaluation for SHA-3 Candidate?” The Second SHA-3 Candidate
Conference, 2010, Aug. 23-24, 2010.

[16] M. Rogawski and K. Gaj, “Groestl Tweaks and their Effect on FPGA Results,” Cryptology ePrint Archive:
Report 2011/635.

[17] SHA-3 Contest: http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
[18] SHA-3 Hardware Implementations: http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
[19] R. Shahid, M.U. Sharif, M. Rogawski, and K. Gaj, "Use of Embedded FPGA Resources in Implementations of

SHA-3 Candidates," The 2011 International Conference on Field-Programmable Technology, FPT 2011, New
Delhi, India, Dec. 12-14, 2011.

[20] S. Tillich, et al. “High-Speed Hardware Implementations of Blake, Blue Midnight Wish, Cubehash, ECHO,
Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, Shavite-3, SIMD, and Skein. Cryptology ePrint Archive,
Report 2009/510.

[21] A. Vyas, “Implementing and Benchmarking of Padding Units and HMAC for SHA-3 Candidates in FPGAs and
ASICs,” Master’s Thesis, George Mason University, Fall 2011.

	 16	

Appendix A
Table A.1: Results for the 512-bit variants of the Round 3 SHA-3 candidates and SHA-2. Notation: Tp –
throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of the throughput to area ratios and the best
architectures are given in bold.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-512
/4(h)/4(v)-m	 560	 386	 1.45	 613	 309	 1.98	 491	 1680	 0.29	 543	 1676	 0.32	
/4(h)	 2300	 2840	 0.81	 2646	 1584	 1.67	 2186	 5891	 0.37	 2442	 5885	 0.42	
/2(h)	 3264	 3435	 0.95	 3478	 2610	 1.33	 2928	 6977	 0.42	 3318	 6971	 0.48	
x1	 N/A N/A	 N/A	 N/A N/A	 N/A	 2965	 9033	 0.33	 3323	 9024	 0.37	
/2(h)-‐PPL2	 4841	 4515	 1.07	 4478	 2879	 1.56	 3954	 8969	 0.44	 4742	 8959	 0.53	
/2(h)-‐PPL4	 6171	 5794	 1.07	 6915	 4575	 1.51	 5991	 9684	 0.62	 7859	 9694	 0.81	
x1-‐PPL2	 6364	 5674	 1.12	 6471	 4571	 1.42	 5660	 10625	 0.53	 6351	 10615	 0.60	
x1-PPL4	 9567	 7497	 1.28	 10706	 5267	 2.03	 9980	 12074	 0.83	 11075	 12082	 0.92	

Groestl-512
/8(v)	 (P+Q)	 1556	 2251	 0.69	 1726	 1773	 0.97	 1677	 6549	 0.26	 1614	 6510	 0.25	
/4(v)	 (P+Q)	 3112	 2393	 1.30	 3230	 2113	 1.53	 3447	 8727	 0.39	 3277	 8750	 0.37	
/2(v)	 (P+Q)	 5119	 3289	 1.56	 5793	 2971	 1.95	 6595	 14318	 0.46	 6265	 14207	 0.44	
x1	 (P+Q)	 9582	 5797	 1.65	 11857	 5234	 2.27	 13061	 22062	 0.59	 11936	 21902	 0.54	
x1-‐PPL2	 (P+Q)	 18213	 10263	 1.77	 18998	 7528	 2.52	 16900	 24292	 0.70	 16114	 24241	 0.66	
x1-PPL4	 (P+Q)	 N/A N/A	 N/A	 N/A N/A	 N/A	 21158	 25515	 0.83	 20580	 25407	 0.81	

/8(v)	 (P/Q)	 1211	 1722	 0.70	 1326	 1358	 0.98	 1335	 4598	 0.29	 1307	 4592	 0.28	
/4(v)	 (P/Q)	 2573	 2036	 1.26	 2772	 1529	 1.81	 2700	 5786	 0.47	 2596	 5770	 0.45	
/2(v)	 (P/Q)	 4816	 2336	 2.06	 5319	 1761	 3.02	 5262	 7763	 0.68	 5262	 7763	 0.68	
x1	 (P/Q)	 7686	 3853	 1.99	 8375	 3630	 2.31	 8669	 12450	 0.70	 8504	 12368	 0.69	

JH-512
/8(v)-‐m	 (MEM)	 138	 307	 0.45	 154	 228	 0.68	 128	 1817	 0.07	 119	 1851	 0.06	
/2(v)	 (MEM) 2052	 1055	 1.95	 2491	 944	 2.64	 2224	 3664	 0.61	 2175	 3660	 0.59	
x1	 (MEM) 4882	 1037	 4.71	 5825	 931	 6.26	 5011	 3288	 1.52	 5139	 3294	 1.56	
x2	 (MEM) 6203	 1587	 3.91	 6859	 1377	 4.98	 6630	 5768	 1.15	 6305	 5786	 1.09	
x1-‐PPL2	 (MEM) 4635	 1990	 2.33	 5060	 1534	 3.30	 5361	 4521	 1.19	 5319	 4521	 1.18	
x2-PPL2	 (MEM) 8183	 2494	 3.28	 9439	 2128	 4.44	 9881	 6339	 1.56	 9665	 6309	 1.53	
x2-‐PPL4	 (MEM) 8107	 3408	 2.38	 8237	 2288	 3.60	 9456	 7427	 1.27	 8806	 7392	 1.19	
/2(v)	 (OTF) 2024	 1127	 1.80	 2104	 954	 2.21	 2107	 3680	 0.57	 1982	 3669	 0.54	
x1	 (OTF) 4686	 992	 4.72	 5181	 939	 5.52	 5181	 3557	 1.46	 5043	 3605	 1.40	
x2	 (OTF) 6413	 1870	 3.43	 7128	 1501	 4.75	 6268	 6276	 1.00	 6032	 6314	 0.96	

Keccak-512
/8(v)-‐m	 495	 344	 1.44	 579	 320	 1.81	 500	 2398	 0.21	 467	 2395	 0.19	
x1 7612	 1320	 5.77	 7208	 1061	 6.79	 8526	 3471	 2.46	 7825	 3467	 2.26	
x1-PPL2 9306	 1720	 5.41	 9619	 1468	 6.55	 11215	 4294	 2.61	 10816	 4295	 2.52	
x2-‐PPL2 9915	 2297	 4.32	 N/A	 N/A	 N/A	 13389	 6523	 2.05	 12984	 6519	 1.99	
x2-‐PPL4 12935	 3387	 3.82	 15661	 2539	 6.17	 20356	 8553	 2.38	 19300	 8549	 2.26	

Skein-512
x1 1201	 1069	 1.12	 1441	 983	 1.47	 1135	 3072	 0.37	 1229	 3073	 0.40	
x4 3084	 1418	 2.17	 3462	 1114	 3.11	 2438	 4006	 0.61	 2736	 4015	 0.68	
x8 2832	 1577	 1.80	 3573	 1373	 2.60	 3121	 5589	 0.56	 3322	 5507	 0.60	
x4-PPL2 5378	 2026	 2.65	 5943	 1702	 3.49	 4271	 4705	 0.91	 4682	 4683	 1.00	
x4-PPL5 N/A N/A	 N/A	 7071	 3486	 2.03	 6670	 6199	 1.08	 6972	 6185	 1.13	
x8-‐PPL10 N/A N/A	 N/A	 12176	 6145	 1.98	 11063	 11205	 0.99	 10802	 11204	 0.96	

SHA-512

x1 2013	 798	 2.52	 2422	 553	 4.38	 2128	 1995	 1.07	 2378	 1996	 1.19	

	 17	

Table A.2: The effect of the padding unit on the performance of 5 Round 3 SHA-3 candidates in four
FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Notation:
Tp – throughput, A – area, Tp/A – Throughput to Area Ratio, Δ [%] – relative change in the Throughput,
Area, and Throughput to Area ratio as a result of adding padding unit to the hash unit. The relative change
in the throughput to area ratio has been marked in bold.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV

 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256
/2(h) 2308 1771 1.30 2226 1257 1.77 2157 3553 0.61 2337 3543 0.66
/2(h) - PAD 2266 1860 1.22 2363 1391 1.70 2206 3660 0.60 2316 3680 0.63

Δ [%] -‐1.83 5.03 -6.53 6.18 10.66 -4.04 2.25 3.01 -0.74 -‐0.90 3.87 -4.59
Groestl-256 (P/Q)

x1 6117 1795 3.41 7220 1870 3.86 6604 6460 1.02 6269 6421 0.98
x1 - PAD 6572 2020 3.25 7071 1884 3.75 6160 6466 0.95 6033 6415 0.94

Δ [%] 7.44 12.53 -4.53 -‐2.06 0.75 -2.79 -‐6.72 0.09 -6.81 -‐3.76 -‐0.09 -3.67
JH-256 (MEM)

x1 4955 982 5.05 5412 849 6.37 5276 3221 1.64 4759 3210 1.48
x1 - PAD 4543 1001 4.54 5086 918 5.54 5024 3383 1.49 4815 3415 1.41

Δ [%] -‐8.32 1.93 -10.06 -‐6.02 8.13 -13.09 -‐4.77 5.03 -9.33 1.17 6.39 -4.90
Keccak-256

x1 13337 1369 9.74 11839 1086 10.90 15493 3531 4.39 16104 3471 4.64
x1- PAD 12745 1375 9.27 12451 1147 10.86 14624 4060 3.60 15167 3734 4.06

Δ [%] -‐4.44 0.44 -4.86 5.16 5.62 -0.43 -‐5.61 14.98 -17.91 -‐5.82 7.58 -12.45
Skein-256

x4 3023 1218 2.48 3373 1005 3.36 2475 3943 0.63 2592 3936 0.66
x4 - PAD 3127 1245 2.51 2957 1026 2.88 2495 3960 0.63 2647 3970 0.67

Δ [%] 3.43 2.22 1.19 -‐12.33 2.09 -14.13 0.77 0.43 0.34 2.10 0.86 1.23

Table A.3. Change in the results between the logic-only implementation (without DSP units and Block
RAMs) and the implementation using these embedded resources. The respective columns represent:
ΔThroughput [%] - Relative Improvement in Throughput, ΔReconfigurable Logic [%] - Relative
Reduction in the amount of Reconfigurable Logic, ΔTp/Reconfigurable Logic [%] - Relative
Improvement in Throughput/Reconfigurable Logic Ratio. N/A - indicates that an investigated architecture
with embedded resources did not improve any of the performance measures. All results presented in this
table (unlike the results in the rest of the paper) have been obtained for architectures without padding
units, using Xilinx ISE 12.3, and Altera Quartus II 10.0.

Δ Throughput
[%]

Δ Reconfigurable logic
[%]

ΔTp/Reconfigurable logic
[%]

Algorithm

Virtex 5 Stratix III Virtex 5 Stratix III Virtex 5 Stratix III
BLAKE -17.4 -15.7 57.3 47.6 93.7 61.0
Groestl -3.8 20.9 41.5 61.8 64.6 216.2
JH -10.0 2.8 -5.1 11.3 -14.4 15.9
Keccak 8.1 0.6 -9.3 -0.5 -1.1 0.1
Skein -20.0 N/A 2.4 N/A -18.0 N/A

	 18	

Fig. A.1. BLAKE. Transformation of the datapath from the logic-only implementation to the
implementation using embedded resources.

Fig. A.2. Groestl. Transformation of the datapath from the S-Box based logic-only implementation to the
T-Box based implementation using embedded resources.

	 19	

Table A.4. Change in the throughput to area ratio between the logic-only implementation (without DSP
units and Block RAMs) and the implementation using these embedded resources. Value given in bold
represents the best result for a given algorithm and FPGA family, and the improvement column represents
a relative improvement compared to the basic architecture achieved using the best of the two
architectures. All results presented in this table (unlike the results in the rest of the paper) have been
obtained for architectures without padding units, using Xilinx ISE 12.3, and Altera Quartus II 10.0.

Virtex 5 Stratix III Algorithm
&

Architecture
Logic-only With

embedded
resources

Improvement Logic-only With
embedded
resources

Improvement

BLAKE
/2(h)

1.32 2.56 94% 0.59 0.95 61%

Groestl
x1 (P/Q)

3.28 5.41 65% 0.79 2.49 216%

JH
x1 (MEM)

4.67 4.00 0% 1.37 1.59 16%

Keccak
x1

10.26 10.15 0% 3.28 3.28 0%

Skein
x4

2.28 1.87 0% 0.62 0.26 0%

