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Abstract—A common way of determining the maximum clock
frequency of a digital system is static timing analysis provided
by CAD toolsets, such as Xilinx Vivado, Xilinx ISE, and Intel
Quartus Prime. Finding the actual maximum clock frequency
is difficult, especially in Xilinx Vivado, due to the multitude of
tool options, and a complex dependence between the requested
clock frequency and the actual clock frequency achieved by the
tool. For example, a binary search to find maximum frequency
is tedious, time-consuming, and often does not obtain the correct
result. In this research, we introduce an automated hardware
optimization tool called Minerva. Minerva determines the close-
to-optimal settings of tools, using static timing analysis and a
heuristic algorithm developed by the authors, and targets either
optimal throughput or throughput-to-area (TPA) ratio. We apply
Minerva to the hardware benchmarking of authenticated cipher
candidates competing in the CAESAR cryptographic contest,
where best TPA ratio (without any specific target for maximum
clock frequency) is one metric by which winners are selected. We
evaluate RTL designs of 29 Round 2 CAESAR candidates and the
current standard, AES-GCM, in terms of throughput and TPA
ratio. Compared to a binary search for maximum frequency,
our results demonstrate up to 25% improvement in terms of
throughput, and up to 38% improvement in terms of TPA ratio.

I. INTRODUCTION

Throughput, area, and throughput to area ratio are some of
the most important metrics used for hardware evaluation. In
hardware, the maximum throughput depends on the maximum
clock frequency supported by each algorithm. The maxi-
mum clock frequency that can be achieved by a given RTL
(Register-Transfer Level) code can be estimated or measured
at different stages of the implementation process. The main
stages are synthesis, placing and routing (P&R), and actual
experimental testing on the board. The post-synthesis and post
place & route results are determined by the FPGA tools using
static timing analysis. There are two difficulties associated
with static timing analysis of digital systems designed and
modeled using hardware description languages, and imple-
mented using FPGAs:

1) The latest version of CAD tools provided by Xilinx
(Vivado), does not have the capability to report the maximum
frequency achievable for the corresponding code. Essentially,
the user requests a target frequency, and the tool reports either
a “pass” or “fail” for its attempt to achieve this goal.

2) While there are 25 optimization strategies (i.e., sets of
preselected option values) predefined in the tool, applying
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them sequentially, especially using the Graphical User Inter-
face, is extremely tedious and time consuming.

Cryptographic contests have emerged as a commonly ac-
cepted way of developing cryptographic standards. This pro-
cess has appeared to work very well in the case of Advanced
Encryption Standard (AES), developed in the period 1997-
2001 [1], and Secure Hash Algorithm 3 (SHA-3), developed
in the period 2007-2012 [2]. At the same time, the observed
increase in the number of algorithms qualified to the first round
of the respective contests (51 in case of SHA-3 and 57 for
CAESAR) inevitably brings the question of the efficiency of
the current benchmarking approach. The number of candidates
submitted to the first round of CAESAR (57) has exceeded the
number of submissions to any previous contest, confirming the
aforementioned trend. Similarly, the numbers of candidates
qualified to the second rounds of their respective competitions
have increased from 5 in the case of AES, through 14 for SHA-
3, to 29 in the case of CAESAR. This issue also applies to
post-quantum cryptography and the corresponding algorithms
which are significantly more complex and harder to evaluate
compared to authenticated ciphers and hash functions.

To overcome the aforementioned difficulties and facilitate
hardware benchmarking of algorithms by static timing analysis
methods, we introduce Minerva. Minerva is an automated and
comprehensive hardware optimization tool. Minerva employs a
unique heuristic algorithm, which is customized for frequency
search using CAD toolsets, in addition to supporting other
standard search techniques. It can incorporate an arbitrary
number of predefined or user-defined strategies to achieve the
highest possible frequency or frequency/area for each design.
Moreover, it takes advantage of multithreading and multi-core
execution to significantly reduce run time.

The use of an optimization tool, such as Minerva, is
highly desirable for cryptographic contests, which determine
relative efficiency based on the TPA ratio, e.g., Mbps/LUT
or Mbps/slice for implementations in Xilinx FPGAs. In this
paper, we report the Minerva optimized results in terms
of Throughput, Area and Throughput to Area ratio for the
RTL VHDL code of 29 Round 2 CAESAR candidates and
AES-GCM [3]. Results are separately reported for all three
optimization modes supported by Minerva. We then compare
Minerva results with the results generated using a traditional
binary search in Xilinx Vivado. Additionally, the run times of
both methods (i.e., the three Minerva modes and the binary
search) are reported for all of these authenticated ciphers.



II. PREVIOUS WORK

A tool called SUPERCOP, which expedites comparison
of software implementations of cryptographic algorithms, is
presented in [4]. This open source tool supports the choice
of the best compilation options from thousands of different
combinations. It also facilitates execution time measurements
on multiple computer systems.

In [5], an open-source environment for fair, comprehensive,
automated, and collaborative hardware benchmarking of al-
gorithms belonging to the same class is presented. The main
part of this environment is the ATHENa tool for optimization
of tool options, requested clock frequency, and the starting
point of placement. ATHENa provides capabilities similar to
our Minerva capabilities for designers targeting FPGA devices
from two major vendors, Xilinx and Altera. However, it works
only with the previous-generation Xilinx CAD tool (ISE),
which will not support Xilinx FPGAs beyond the Series 7
families (Virtex-7, Kintex-7, Artix-7).

Moreover, FPGA vendors themselves have their own tools
for the exploration of implementation options. One example
is ExploreAhead [6] from Xilinx, which is a part of the
high-level optimization tool called PlanAhead. PlanAhead is
provided as a built-in option in Vivado Design Suite, the latest
version of Xilinx CAD tools. ExploreAhead allows executing
multiple implementation runs based on predefined or user-
defined strategies (understood as preselected values for a set
of options). Additionally, it supports parallel runs on multi-
core CPUs. Unlike ATHENa, which supports two vendors,
PlanAhead works only with Xilinx FPGAs. Additionally,
ATHENa is aimed at achieving the best possible performance
(e.g., the best throughput/area ratio), while ExploreAhead and
Vivado aim only at achieving the requested clock frequency.

In [7], the authors present InTime, a machine learning ap-
proach, supported by a cloud-based compilation infrastructure,
to automate the selection of FPGA CAD tool parameters and
minimize the TNS (total negative slack) of the design. A
combination of open-source and industrial benchmarks that
occupy between 50-90% of the FPGA capacity have been
investigated to measure the efficiency and capability of this
tool. The results demonstrate up to 70% timing improvement
on modern Altera FPGAs. However, InTime is a commercial
tool, which may be too expensive for use in academia and
in small companies. On the other hand, Minerva is a free
and open-source tool, and its source code and user’s manual
are available at [8]. In addition, InTime does not have the
capability to find the actual maximum frequency with positive
TNS near zero; it just tries to find the best tool options to
minimize the WNS (Worst Negative Slack) corresponding to
a specific design and user-defined timing constraints.

Experimental testing using actual hardware is an alternative
method for hardware evaluation of maximum frequency. In [9],
a Zyng-based testbed for hardware evaluation of cryptographic
algorithms is reported. The authors measured the maximum
frequency and throughput supported by 12 Round 2 SHA-
3 candidates using two methods, experimentally, and using

static timing analysis, and compared the results. In these
results, the experimental maximum frequency was always
higher than frequency achieved by static timing analysis, but
the ratio of these two frequencies was a strong function of the
implemented algorithm.

II1. ENVIRONMENT

In order to observe the behavior of the Vivado Design
Suite in static timing analysis, synthesis and implementation
were performed for the VHDL code of 5 CAESAR Round 2
candidates [3]. At first, the same requested clock frequency
constraint was used for each algorithm. The target clock
frequency was set to 333 MHz, and the theoretically achievable
frequency (further referred to as the reference frequency) was
calculated based on WNS, utilizing the following formula:

Minimum Clock Period = Target Clock Period—W NS

(D
In the next step, WNS results were generated for the requested
clock frequency varying in range of -64 to +64 MHz of the
reference frequency, with a precision of 1 MHz. In other
words, the authors generated WNS results for 128 different
target clock frequencies in order to observe a trend. Fig. 1,
Fig. 2 and Fig. 3 show this trend for AES-GCM, SCREAM
and ICEPOLE, respectively. The GraphGen function provided
by Minerva accommodated the aforementioned process.

As observed in Fig. 2 and Fig. 3, there are fluctuations
around the calculated reference clock frequency. This fluctua-
tion is much higher in case of ICEPOLE. As a result, it would
be very hard to find the actual maximum clock frequency
without automation. In contrast, there are fewer fluctuations
for AES-GCM. Based on Xilinx documentation [10], the only
acceptable target frequency is the one that gives us positive
slack. Therefore, based on the aforementioned graphs, we
cannot rely on (1) to calculate the actual maximum clock
frequency. Instead, we need a more complex procedure. In
addition, these results are generated using only default options
of Vivado for all implementation steps, such as mapping,
placing and routing. The Vivado Design Suite ships with
25 predefined optimization strategies, which can be used to
achieve a higher maximum frequency and a more optimized
design. Hence, incorporating all of these strategies leads to an
even more tedious process.

One way to find the maximum frequency in a given fre-
quency range is to use a binary search algorithm. However,
there are two problems associated with this method: 1) We
cannot easily cover 25 optimization strategies, and 2) Based
on the fluctuations observed in the generated graphs, different
results will be achieved for different input ranges. Also, it is
possible that none of the results will be the actual maximum
clock frequency.

Fig. 3 indicates how the binary search scheme works to
find the maximum achievable clock frequency between the
graph generation input ranges. At first we check the lower
bound and upper bound (number 1 and number 2 in the
figure) to make sure we search in a correct range. In other
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Fig. 1: Dependence of the Worst Negative Slack (WNS) on the Requested Clock Frequency (Req Freq) for the high-speed

implementation of AES-GCM.
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Fig. 3: Dependence of the Worst Negative Slack (WNS) on the Requested Clock Frequency (Req Freq) for the high-speed
implementation of ICEPOLE, and the graphical representation of the binary search scheme.

words, we receive positive WNS for lower bound and negative
WNS for upper bound frequencies; otherwise the input range
should be updated. Then, we find the middle point of the
aforementioned range (number 3 in the figure) and generate
the timing result for that frequency. If the resultant WNS is
positive, we will update the lower bound frequency with the

middle point. Otherwise, the upper bound frequency should be
reduced to the middle frequency. The aforementioned binary
search scheme continues until we reach a precision of 1 MHz.
As we can observe in Fig. 3, the binary search result in case
of ICEPOLE is 346 MHz (number 8 in the figure), which is
not the correct maximum frequency. Based on the ICEPOLE



graph, the maximum frequency is 389 MHz. As a result, we
equip Minerva with a heuristic algorithm aimed at addressing
this problem.

Minerva is used to execute Vivado in batch mode, utilizing
the Vivado batch mode Tcl scripts provided by Xilinx. An
XML-based Python program is used to manage runs. This
program launches Vivado with Tcl scripts that are dynamically
created during run-time and later modified to perform each
step of the optimization algorithm. Minerva is designed to
be used to automate the task of finding optimized results for
each directory of a source code repository, and works with
any device that Vivado supports.

IV. DESIGN FLow

Minerva supports multiple frequency search algorithms, and
supports addition of new algorithms in the future. In this work
we implement three modes of Minerva frequency searches.
The first mode (Minerva_TP_Opt) is designed specifically to
find the maximum frequency achievable by a given hardware
design. Minerva_TP_Opt function receives the following pa-
rameters as input:

o fmin and fmax: these are the lower and upper bounds of
the frequency range that we span to find the maximum
frequency. These values can be updated during run-time.

o n: indicates the number of runs to be performed in
parallel. Minerva can run on multiple CPU cores and take
advantage of multithreading.

o p: represents the number of optimization strategies to be
considered during the search.

e r (precision range size): is the maximum number of
frequency targets (higher than the last achieved maximum
clock frequency) to be explored. If we achieve positive
slack for a frequency in this range, we will continue the
search; otherwise we will terminate the process.

This function generates an output report that contains the

following information:

1) WNS result for all test cases with the corresponding

optimization strategy ID and target clock frequency.

2) WNS and Area results for all target frequencies with

positive slack.

3) Maximum frequency with WNS > 0, f_pass_max

4) Minimum Area in the number of LUTSs
achievable for f_pass_max (denoted by
min_LUTs(f_pass_max)), the corresponding ratio
f_pass_max/min_LUTSs(f_pass_max), and the
corresponding optimization strategy ID.

5) Minimum Area in the number of Slices
achievable for f_pass_max (denoted by
min_Slices(f_pass_max)), the corresponding ratio
f_pass_max/min_Slices(f_pass_max), and the

corresponding optimization strategy ID.
6) Execution time.
Please note that the Strategy IDs may be different for the
outputs 4) and 5).
Fig. 4 (a)-(f) completely describes how Minerva_TP_Opt
algorithm works. This figure is drawn assuming the following
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Fig. 4: Graphical representation of the Minerva frequency
search algorithm Minerva_TP_Opt, with the parameters
n=p=r=8. White and grey blocks indicate positive and negative
WNS respectively.

values of the Minerva parameters: fmin=50, fmax=200, n=8,
r=8, and p=8. Each column illustrates one requested clock
frequency value, and square blocks in that column correspond
to optimization strategies. Each square block represents one
test case with the optimization strategy ID mentioned inside it.
Colors of these blocks are white or gray, indicating positive or
negative WNS, respectively. The runs that execute in parallel
at each step are represented using dotted boxes.

Fig. 4(a) shows the first step in Minerva_TP_Opt algorithm.
In the first step, the given frequency range (50 to 200) is
divided by r — 1 to have 8 frequencies including 50 and 200,
with the same distance between each other, as shown in Fig.
4(a) Freq axis. Then, WNS results are generated for all of these
8 target frequencies and the default optimization strategy. It
is feasible to run all of these target frequencies at the same
time, as n is equal to 8 in this example. After WNS results
are generated, if the upper bound frequency (fmax) gives us
positive slack, we update fmin and fmax values using (2) and
(3), and repeat the previous process (step forward).

fmin(new) = fmax(old) (2)
fmazx(new) = fmaz(old) 4+ 100 (3)

If all of the first 8 target clock frequencies give us negative
slack, we step backward by a frequency range of 100 MHz.
Accordingly, fmin and fmax are updated using (4) and (5),
and the first step is repeated.

fmin(new) = fmin(old) — 100 4
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fmaz(new) = fmin(old) %)

The aforementioned process leads to finding the maximum
frequency, less than fmax, that gives us positive slack using
only the default optimization strategy. As we can observe in
Fig. 4(a), in the first step, positive slack is achieved for fmax
(200 MHz). Hence, we step forward and update fmin and fmax
to 200 and 300 MHz respectively, see Fig. 4(b). As shown in

this figure, 242.9 MHz is the highest frequency that leads to
positive slack with the default optimization strategy.

At this point, the optimization runs are started for the
remaining frequencies in this range higher than 242.9 MHz. In
this example 257.2 MHz, with optimization strategy number
3 has positive slack, so the maximum frequency is updated to
257.2 MHz. In case of higher frequencies, all 8 optimization
strategies fail. Therefore, 257.2 MHz becomes our starting
point to begin the next step of frequency search considering
8 optimization strategies and a precision of 1 MHz.

The next step is illustrated in Fig. 4(c). In this step we
go forward by 1 MHz. As soon as we find a frequency
with positive slack, the lower frequencies and the remaining
optimization strategies corresponding to these frequencies are
eliminated. The aforementioned procedure is continued until 8
(precision range size) consecutive frequencies fail to provide
positive slack for all possible optimization strategies (8 in this
example), as shown in Fig. 4(d) and Fig. 4(e). Therefore,
in this example, the maximum frequency with WNS > 0,
f pass_max, is 268 MHz, using the optimization strategy
number 4.

Let us assume that the number of LUTs for Strategy
4 is 1000, and the number of Slices 300. Based on Fig.
4(d), only the first 5 optimization strategies were tested for
f_pass_max=268 MHz. Therefore, in the next step, shown in
Fig. 4(f), we perform runs for the remaining three strategies
at the same maximum clock frequency of 268 MHz. As
we can see in this figure, only one of these runs passes
with WNS > 0, for the strategy ID=7. Now let us as-
sume that the corresponding areas for Strategy 7 are 970
LUTs and 310 Slices. Then, the algorithm returns two sets:
{f_pass_max=268 MHz, Minimum number of LUTs achiev-
able for f_pass_max, min_LUTs(268 MHz)=970, the corre-
sponding ratio f_pass_max/min_LUTs(f_pass_max)=268/970,
and the corresponding optimization strategy ID=7} as well as
{f_pass_max=268 MHz, Minimum number of Slices achiev-
able for f_pass_max, min_Slices(268 MHz)=300, the corre-
sponding ratio f_pass_max/min_Slices(f_pass_max)=268/300,
and the corresponding optimization strategy ID=4}.

The second mode of Minerva frequency search (Min-
erva_TPA_Opt) targets further optimization of the frequency
to #LUTs ratio (Throughput to area ratio). This mode can
be used after Minerva_TP_Opt search generates the max-
imum frequency. Minerva_TPA_Opt receives the following
parameters as input: 1) f_pass_max (maximum frequency
achieved by Minerva_TP_Opt mode), 2) n (number of runs
in parallel) and 3) p (number of optimization strategies). The
output report contains the same information as the first mode
(Minerva_TP_Opt). In this mode, we generate the results
for all the frequencies between 96% of f_pass_max and
f_pass_max, with a precision of 1 MHz. We also try all
possible optimization strategies. At the end, the requested
frequency and optimization strategy combination that leads to
the best TPA is reported.

The third mode of Minerva frequency search (Min-
erva_Fast_Opt) is designed to achieve proper results in terms



TABLE I: Detailed values of the maximum clock frequency (MHz), area (number of LUTs) and frequency/LUT generated
using three modes of Minerva and binary search for 29 Round 2 CAESAR candidates and AES-GCM

Algorithm - Minerva_TP_OI;:t . - Minerva_TPA_O][:)t . - Minerva_Fast_Ogt : . Binary searchF :
req. req. req. req. req. req. req. req.

[lez] #LUTs #LUqu [lez] #LUTs #LUqu [Ml-?z] #LUTs #LUqu [MI—?Z] #LUTs #LUqu

ACORN 394 1,632 0.241 394 1632 0.241 345 1,475 0.234 | 374.32 1,626 0.230
AEGIS 368 7,504 0.049 368 7,504 0.049 356 7,509 0.047 | 329.49 7,484 0.044
AES-COPA 280 7,717 0.036 280 7,717 0.036 271 7,687 0.035 | 269.73 7,702 0.035
AEZ 394 5,167 0.076 394 5,167 0.076 381 5,008 0.076 | 314.55 5,101 0.062
Ascon 451 1,564 0.288 451 1,564 0.288 442 1,542 0.287 | 427.05 1,542 0.277
CLOC 251 3,844 0.065 248 3,676 0.067 248 3,676 0.067 | 246.88 3,816 0.065
COLM 263 8,131 0.032 263 8,131 0.032 255 8,118 0.031 249.00 8,093 0.031
Deoxys 366 3,343 0.109 362 3,284 0.110 362 3,284 0.110 | 356.08 3,313 0.107
HS1-SIV 234 8,078 0.029 234 8,078 0.029 231 8,074 0.029 | 226.00 8,066 0.028
ICEPOLE 441 5,128 0.086 441 5,128 0.086 441 5,128 0.086 | 356.74 5,677 0.063
JAMBU-AES 288 1,696 0.170 285 1,595 0.179 285 1,595 0.179 | 273.24 1,688 0.162
Joltik 439 1,606 0.273 427 1,558 0.274 427 1,558 0.274 | 413.87 1,592 0.260
KetjeJr 269 1,320 0.204 259 1,200 0.216 259 1,200 0.216 253.96 1,306 0.194
Minalpher 242 7,947 0.030 234 7,381 0.032 234 7,381 0.032 202.93 7,326 0.028
MORUS 299 4,594 0.065 299 4,594 0.065 295 4,615 0.064 | 283.79 4,586 0.062
NORX 206 4,474 0.046 201 3,665 0.055 201 3,665 0.055 197.88 4,371 0.045
OCB 351 4,483 0.078 351 4,483 0.078 342 4,463 0.077 | 334.82 4,487 0.075
OMD 301 4,624 0.065 301 4,624 0.065 282 4,618 0.061 259.18 4,586 0.057
PAEQ 322 8,373 0.038 322 8,373 0.038 294 8,331 0.035 | 280.27 8,334 0.034
7-Cipher 209 3,861 0.054 209 3,861 0.054 201 3,843 0.052 192.38 3,838 0.050
POET 249 7,487 0.033 249 7,487 0.033 249 7,487 0.033 | 216.11 7,380 0.029
PRIMATEs-GIBBON 216 1,942 0.111 216 1,942 0.111 202 1,886 0.107 185.35 1,827 0.101
PRIMATEs-HANUMAN 215 1,891 0.114 215 1,891 0.114 198 1,805 0.110 195.02 1,796 0.109
RiverKeyak 192 8,169 0.024 192 8,169 0.024 172 7,823 0.022 160.74 7,699 0.021
SCREAM 187 2,614 0.072 187 2,614 0.072 187 2,614 0.072 176.78 2,764 0.064
SILC 347 3,110 0.112 341 3,039 0.112 312 2,952 0.106 | 306.70 3,062 0.100
STRIBOB 381 4,670 0.082 381 4,670 0.082 370 4,648 0.080 | 369.98 4,648 0.080
Tiaoxin 296 7,556 0.039 296 7,556 0.039 280 7,539 0.037 | 258.30 7,492 0.034
TriviA-ck 255 2,587 0.099 255 2,587 0.099 242 2,573 0.094 | 233.25 2,571 0.091
AES-GCM 277 3,105 0.089 277 3,105 0.089 271 3,089 0.088 | 271.92 3,097 0.088

of both throughput and throughput to area ratio in a short
amount of time compared to the first and second modes. Based
on the results generated for 30 benchmarked authenticated
ciphers, we arrived at the optimization strategy that gave us
the best throughput to area ratio in most cases, and utilized
it as a single optimization strategy. This optimization strategy
focused on reducing area by ExploreArea command. There-
fore, Minerva_Fast_Opt works similar to Minerva_TP_Opt,
the only difference is the number of optimization strategies,
i.e., two optimization strategies in case of Minerva_Fast_Opt,
namely, the default one and the one based on the ExploreArea
command.

V. RESULTS

Vivado Design Suite 2015.1 is used for result generation.
The target device is set to the Virtex-7 (xc7vx485-tffg1761-3).
Binary search is done by considering only the default opti-
mization strategy, and Minerva frequency search is configured
using the following values: n = 16, p = 23, r = 12, and the
input range is [100, 500] for all candidates.

Table I presents detailed values of the performance metrics
generated using the three modes of Minerva frequency search
and binary search for the VHDL code of 29 Round 2 CAESAR
candidates and AES-GCM [3]. For each mode, the first and
second columns show frequency in MHz and area in the
number of LUTs, respectively, obtained by utilizing a Minerva

frequency search in the corresponding mode, or binary search.
The third column reports the ratio of frequency to area (in
number of LUTS) calculated based on the results in the first
and second columns. The first, second and third set of results
are generated by Minerva_TP_Opt, Minerva_TPA_Opt and
Minerva_Fast_Opt modes of operation, respectively, and the
final set of results is acquired using binary search with the
default optimization strategy.

Fig. 5 presents the ratio of results obtained using the three
modes of Minerva frequency search vs. Binary search in
terms of Throughput. Minerva_TP_Opt is always guaranteed
to return the best Throughput compared to the remaining
two modes. Minerva_TPA_Opt is usually the second best,
due to the different optimization target. Minerva_Fast_Opt, as
expected, is somewhat lagging behind, but it still outperforms
binary search for 28 out of 30 algorithms, reaching in 3 cases
the same performance as Minerva_TP_Opt, and in 10 cases
the same performance as Minerva_TPA_Opt.

Fig. 6 illustrates the ratio of results obtained using the three
modes of Minerva frequency search vs. Binary search in terms
of TPA. The order of candidates is based on the decreasing
improvement of Minerva_TPA_Opt over Binary search. Our
results show that the TPA ratio has improved by almost 38%
for ICEPOLE, and more than 20% in case of AEZ and NORX.
This metric has improved by more than 15% in case of
OMD, and by more than 10% for the next 10 candidates.
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Fig. 6: Ratios of Minerva TPA / Binary Search TPA for three modes of Minerva frequency search, and 30 authenticated ciphers.

Notation: TPA - Throughput/Area ratio.

As expected, algorithms which have more fluctuations around
the reference frequency in the previously generated graphs,
such as ICEPOLE (Fig. 3), take better advantage of Minerva
frequency searches than the stable ones, such as AES-GCM
(Fig. 1) (i.e., 38% vs. less than 5%).

Minerva_Fast_Opt gives the same TPA as
Minerva_TPA_Opt for 10 algorithms. Somewhat
surprisingly, Minerva_TP_Opt gives worse performance

than Minerva_Fast_Opt for 7 authenticated ciphers, e.g.,
NORX, despite the longer execution time. This behavior
is caused by the fact that the best TPA is achieved for
a frequency different than f_pass_max, and only the best
TPA ratios corresponding to f pass_max are returned by
Minerva_TP_Opt.

The computer system used for the optimization runs has

the following specification: Intel Xeon CPU E5-2667 v3,
3.20GHz, 32 CPUs, 128 GB RAM, Ubuntu 14.04 LTS. Table
IT presents the execution times for the three modes of Min-
erva frequency search and the binary search, respectively. As
shown in this table, similarly to the TPA ratio improvement,
Minerva_TP_Opt run time depends on the corresponding
candidate’s graph stability. AES-GCM, the algorithm with the
most stable graph, has the lowest run time (3 hours and 20
minutes) and ICEPOLE, for which the graph shows the most
fluctuations, has one of the highest execution times (12 hours
and 41 minutes). In addition, the Minerva run time has a direct
relation with n (number of runs in parallel) which is 16 in this
case. On the other hand, the times of the binary searches are
very consistent for all 30 algorithms. In addition, as presented
in Table II, Minerva_Fast_Opt has a much lower run time



TABLE II: Run time for binary search and three modes of
Minerva frequency search for 29 Round 2 CAESAR candidate
and AES-GCM

Algorithm Run time [hrs:min]

Minerva Minerva Minerva | Binary

TP_Opt | TPA_Opt | Fast_Opt | search

ACORN 6:13 9:43 1:25 0:44
AEGIS 7:49 12:19 2:02 0:40
AES-COPA 7:57 10:57 2:00 1:00
AEZ 6:18 9:52 1:00 1:00
Ascon 3:15 6:41 0:56 0:50
CLOC 5:46 7:48 1:25 1:35
COLM 6:57 9:31 1:02 0:50
Deoxys 3:14 6:25 1:16 1:04
HS1-SIV 5:14 7:11 1:05 1:10
ICEPOLE 12:41 18:27 2:13 1:00
JAMBU-AES 4:45 7:27 0:38 0:40
Joltik 5:24 8:21 0:56 0:45
KetjeJr 4:01 6:06 1:14 0:51
Minalpher 8:23 11:18 1:40 1:00
MORUS 6:50 9:27 2:30 0:54
NORX 6:09 8:14 0:49 1:15
OCB 5:11 8:11 1:58 1:20
OMD 6:01 8:21 0:55 0:50
PAEQ 13:42 17:59 4:18 1:04
m-Cipher 5:21 7:11 0:56 0:50
POET 6:44 9:05 1:42 1:00
GIBBON 5:31 7:23 1:19 1:00
HANUMAN 5:30 7:18 0:35 1:00
RiverKeyak 12:00 16:55 3:20 0:59
SCREAM 6:52 8:36 1:17 1:10
SILC 7:02 9:30 0:41 0:55
STRIBOB 5:12 8:45 3:45 1:30
Tiaoxin 11:05 14:18 1:57 0:45
TriviA-ck 5:47 7:56 0:46 1:04
AES-GCM 3:34 5:26 0:39 1:04
Average 6:40 9:33 1:32 0:59

Run time

compared to other two modes, and is even faster than a binary
search in case of 7 algorithms.

VI. CONCLUSIONS

We have introduced an automated hardware optimization
tool called Minerva, and demonstrated its utility toward
achieving optimal performance during benchmarking of a large
number of RTL designs of authenticated ciphers. Minerva
searches for the best requested clock frequency and the best
set of tool options, leading to the highest achieved clock
frequency, or the highest achieved frequency to area ratio, after
static timing analysis. In addition, Minerva takes advantage of
multithreading and multi-core execution to reduce run time.
It can apply an arbitrary number of preselected tool option
sets (called optimization strategies), and combine them with a
frequency search in order to achieve the best results in terms
of throughput, or throughput to area ratio. The results for 29
Round 2 CAESAR candidates and AES-GCM indicate that we
can achieve up to 38% improvement in terms of the throughput
to area ratio in comparison to a simpler binary search for
the optimal requested clock frequency, using default values of
all tool options. The average run time depends mostly on n
(number of runs in parallel) which was 16 in our experiments.

This average run time is over 6 and 9 times longer than the
run times for binary searches in case of Minerva_TP_Opt,
and Minerva_TPA_Opt modes, respectively. However, the third
mode of Minerva (Minerva_Fast_Opt) has an execution time
tantamount to a binary search, and produces acceptable results,
compared to the other two modes of Minerva.

Therefore, the choice of operation mode depends on the
user expectation. Minerva_TP_Opt provides the maximum
frequency in a moderate amount of time. Minerva_TPA_Opt,
which runs on top of Minerva_TP_Opt, produces the best
results in terms of throughput/area, but takes more time to
execute. Finally, Minerva_Fast_Opt produces fair results in
terms of both throughput and throughput/area in a very short
amount time - sometimes even faster than a binary search.

Our future work will involve attempts at further run time op-
timization to reduce Minerva execution times by using meth-
ods such as machine learning algorithms. In addition, Min-
erva_Fast_Opt can be enhanced with additional customized
optimization strategies to generate improved results in a short
amount of time. Furthermore, we will be able to add support
for Intel Quartus Prime and ASIC CAD tools. Finally, we
should investigate the properties of authenticated ciphers that
lead to good graph stability (i.e., low change in positive or
negative slack around an optimal point of inflection), or poor
graph stability, which can significantly affect run times of
optimization tools.
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