
AEZ:
Anything-but EaZy in Hardware

Ekawat Homsirikamol,
& Kris Gaj

George Mason University
USA

Based on work partially supported by NSF under Grant No. 1314540.
Special thanks to the authors of AEZ:

Phillip Rogaway, Ted Krovetz, and Viet Tung Hoang.

First Author

Ekawat Homsirikamol
a.k.a “Ice”

PhD Thesis defense on Nov. 18, 2016;
currently with

Cadence Design Systems
in San Jose, CA

3

Outline

• Introduction & Motivation
• CAESAR Hardware API
• Hardware Architecture of AEZ
• Results & Discussions
• Conclusions & Future Work

Introduction &
Motivation

Cryptographic Standard Contests

time
97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

AES

NESSIE

CRYPTREC

eSTREAM

SHA-3

34 stream 4 HW winners
ciphers ® + 4 SW winners

51 hash functions ® 1 winner

15 block ciphers ® 1 winner
IX.1997 X.2000

I.2000 XII.2002

IV.2008

X.2007 X.2012

XI.2004

CAESAR
I.2013

57 authenticated ciphers ® multiple winners
XII.2017

6

Goal: A portfolio of new-generation authenticated ciphers
• offering advantages over AES-GCM
• suitable for wide-spread adoption

Period: March 2014 - December 2017 (tentative)

Organizer: An informal committee of leading cryptographic
experts

Number of candidates:

57 ➞ 29 ➞ 15 ➞ ? ➞ ?
R1 R2 R3 finalists portfolio

CAESAR Competition

7

2016.06.30: Round 2 VHDL/Verilog Code

2016.08.15: Announcement of 15 Round 3 candidates

2016.09.15: Round 3 tweaks

2016.09.25-27: DIAC 2016 - Directions in Authenticated Ciphers

2016.10.15: Round 3 software

2017.04.15 (tentative): Round 3 VHDL/Verilog code

CAESAR Recent and Upcoming Milestones

8

Use Case 1: Lightweight applications (constrained environments)

Use Case 2: High-performance applications

Use Case 3: Defense in depth

• critical: authenticity despite nonce misuse

• desirable: limited privacy damage from nonce misuse

• desirable: authenticity despite release of unverified plaintexts

• desirable: limited privacy damage from release of unverified plaintexts

• desirable: robustness in more scenarios; e.g., huge amounts of data

CAESAR Three Use Cases

9

Misuse Resistant Authenticated Encryption (MRAE)

= authenticity and privacy even if nonce is repeated

Robust Authenticated Encryption (RAE)

= MRAE for any choice of ciphertext expansion
(including no expansion at all)

AEZ Strong Security Notions

Advantages: easy to use, less prone to implementation errors

Disadvantages: two-pass, affecting speed and
memory requirements

10

Round 2:

AEZ, Deoxys=, HS1-SIV, Joltik=

Round 3:

AEZ, Deoxys-II

CAESAR Candidates Targeting MRAE

11

Robust Authenticated Encryption Scheme

K – Key, N – Nonce, A – Associated Data, 𝛌 - Ciphertext Expansion, T - Tweak
Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016

12

Using Generalized Block Cipher to realize
Robust Authenticated Encryption (RAE) Scheme

Generalized Block Cipher
- Arbitrary input size in bytes
- Output size = Input size
- Tweak - non-secret value that

individualizes the permutation
associated with the key

Authenticator
- String of 𝜏 zeros

N – Nonce
A – Associated Data
𝜏 – Authenticator length (in bits)

a.k.a. Ciphertext Expansion

Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016

13

Strong Security Properties

a) If (M, A) tuples are known not to repeat, no nonce is needed.
b) Nonce repetitions: privacy loss is limited to revealing repetitions

in (N, A, M) tuples, authenticity not damaged at all.
c) Any authenticator-length can be selected, achieving best-

possible authenticity for this amount of ciphertext expansion.
d) If there’s redundancy in plaintexts, whose presence is verified

on decryption, this augments authenticity.
e) By last two properties: one can minimize length-expansion

for bandwidth-constrained apps.

Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016

14

Structure of AEZ

AEZ-tiny:

For strings < 32 bytes

AES4-based

AEZ-core:

For strings ≥ 32 bytes

AES4 and AES based

Source: P. Rogaway, “Update on AEZ v4”, DIAC 2016

15

AEZ-tiny

AEZ-core

Basic Building Block:
Tweakable Block Cipher - TBC

16

Tweakable Block Cipher - Notation

j=-1, i

X

Y

j≥0, i

X

Y

j≥0
AES4-based

j=-1
AES10-based

17

“Writing software for AEZ is not easy, while doing a
hardware design for AEZ is far worse”

“From the hardware designer’s perspective, AEZ’s name
might seem ironic, the name better suggesting anti-easy, the
antithesis of easy, or anything-but easy”

Warnings by the Authors of AEZ

V. T. Hoang, T. Krovetz, and P. Rogaway,
specification of AEZ v4.1, October 2015

18

• Three algorithms in one

a. AEZ-prf to process empty messages
b. AEZ-tiny to process messages of the size smaller than

32 - authenticator length (in bytes)
(= 16 bytes for recommended values of parameters)

c. AEZ-core to process all remaining message sizes.
Dilemma:

• Resource sharing: decreases area, complicates scheduling

• No resource sharing: increases area, simplifies scheduling

Hardware Implementation Challenges (1)

19

AEZ-tiny

20

AEZ-core

5 · 4 AES rounds per 2 AES blocks
= 10 AES rounds per 1 AES block

Special treatment of the
last 4 blocks

21

• Three algorithms in one

a. AEZ-prf to process empty messages
b. AEZ-tiny to process messages of the size smaller than

32 - authenticator length (in bytes)
(= 16 bytes for recommended values of parameters)

c. AEZ-core to process all remaining message sizes.
Dilemma:

• Resource sharing: decreases area, complicates scheduling

• No resource sharing: increases area, simplifies scheduling

Hardware Implementation Challenges (1)

22

• Two-pass algorithm (AES-core)

• Pass 1 – Used to calculate S

• Pass 2 – Used to calculate all output blocks

Dilemma:

• repeat ~40% of computations involving all message blocks,
already done in the first pass

• store intermediate results of the size of the entire message

Hardware Implementation Challenges (2)

23

AEZ-core

Pass 1

Goal of Pass 1

24

• Two-pass algorithm (AES-core)

• Pass 1 – Used to calculate S

• Pass 2 – Used to calculate all output blocks

Dilemma:

• repeat ~40% of computations involving all message blocks,
already done in the first pass

• store intermediate results of the size of the entire message

Hardware Implementation Challenges (2)

25

• Input Reblocking caused by blocks with variable length
dependent on the overall message size
• AEZ-tiny: variable-size blocks L and R
• AEZ-core: variable-size blocks Mu and Mv

• Last but one pair of blocks, Mu possibly empty
Problem:
• must internally create and process blocks of

unconventional sizes
• requires variable shifts and rotations costly in terms of area

Hardware Implementation Challenges (3)

26

Variable-size blocks

AEZ-tiny

AEZ-core

27

• Treatment of incomplete blocks
• Complex padding required for blocks other than the last

block of the message (Mu and Mv)
• Need for precomputations in TBC

• Time and storage required depends on the
maximum size of message and the maximum size of AD

• Complex scheduling and control

Hardware Implementation Challenges (4)

28

• No support for
§ arbitrary key length
§ vector-valued Associated Data
§ arbitrary ciphertext expansion

(features not supported by implementations of any other candidates)

Limitations of Our Implementation

• Key size fixed at 384 bits
• Authenticator length a.k.a. Ciphertext Expansion

fixed at 16 bytes = 128 bits

CAESAR
Hardware API

30

• Specifies:
• Minimum compliance criteria
• Interface
• Communication protocol
• Timing characteristics

• Assures:
• Compatibility
• Fairness

• Timeline:
• Based on the GMU Hardware API presented at CryptArchi 2015,

DIAC 2015, and ReConFig 2015
• Revised version posted on Feb. 15, 2016
• Officially approved by the CAESAR Committee on May 6, 2016

CAESAR Hardware API

31

Top-Level Block Diagram

Pre-Processor, Post-Processor, CMD FIFO, and Two-pass FIFO
generic, common for all candidates

32

Top-Level Block Diagram of AEZ

64

64
32

Hardware
Architecture

of AEZ

34

• Optimization Target
• Maximum Throughput to Area ratio

• Operations
• Encryption and decryption in one module, but only one of them

performed at a time (half-duplex)
• Key scheduling, padding and handling of incomplete blocks

in hardware

• Choice of Parameters
• Key length = 384 bits
• Nonce length = 96 bits
• Authenticator length = 16 bytes = 128 bits

Design Parameters

35

• Selection
• Maximum Message Length = 211-1 bytes
• Maximum AD Length = 210-1 bytes

• Maximum Message Length (2047 bytes)
• Greater than the maximum length of the Ethernet v2 packets

(1500 bytes)
• Limits the amount of memory required for the Two-Pass FIFO
• Approved by the CAESAR Committee as a recommended

maximum length for all two pass-algorithms
and an optional maximum length for single-pass algorithms

Maximum Message/AD Length

36

Difference Compared to Software

𝜏

TC

Ciphertext after expansion
divided into the Ciphertext C
and the Tag T

37

Low-Level Block – Tweakable Block Cipher

TBC

38

Tweakable Block Cipher – Ej,i

j=-1, i

X

Y

j≥0, i

X

Y

j≥0
AES4-based

j=-1
AES10-based

K

39

Y = AES-roundKey(X + ∆) or Y = AES-roundKey(X + ∆) + ∆

TBC Output Y Calculations

40

Y = AES-roundKey(X + ∆) or Y = AES-roundKey(X + ∆) + ∆

TBC Output Y Calculations

41

I | J | L ← Extract(K)

Init = 0 or L or 2L or 4L

A = I or J

23+bn[6:3]A term present
only if 𝛼 = Yes

bn = i - 1

x represents any value

∆ Calculations as a Function of (K, j, i)

42

A = I or J

2A, 4A, 8A,…, 210A

Precomputations Required

because
max(bn)= max(i-1) =
=26-1
max(3+bn/8)=10

value of i limited
by the maximum number
of AD blocks

Init

43

Computations of ∆

Each term determined
in one clock cycle

Maximum 5 clock
cycles required

44

Datapath: Top

Results &
Discussion

46

Resource Utilization & Maximum Clock Frequency

FF FF% LUTs LUTs% Slices Slices%
TBC 927 39% 1527 33% 480 39%
CipherCore 1983 84% 4166 91% 1259 101%
AEAD 2347 100% 4597 100% 1246 100%

Clk
Freq

Clk
Freq%

TBC 362 100%
CipherCore 335 93%
AEAD 335 93%

47

Latency (Clock Cycles) vs. Message Size (Bytes)

Encryption/Decryption

48

Cycles per Byte vs. Message Size

25 cycles
32 bytes

≈ 0.78 cycle/byte

Encryption/Decryption

49

Throughput for Long Messages

ThroughputEncryption/Decryption ≈
256
25

· Clock Frequency

ThroughputAuthentication ≈ 128
5

· Clock Frequency

50

Results for Virtex 6 – Throughput vs. Area
Logarithmic Scale

A

E, D

E, D

A

A

E, D

E

D, AE, D
A

E – Throughput for Encryption
D – Throughput for Decryption
A – Throughput for Authentication Only
Default: Throughputs the same for all 3 operations

AES-GCM AEZ

51

Relative Throughput in Virtex 6
Ratio of a given Cipher Throughput/Throughput of AES-GCM

Throughput of AES-GCM = 3239 Mbit/s

E – Throughput for Encryption
D – Throughput for Decryption
A – Throughput for Authentication Only
Default: Throughput the same for all 3 operations

1 12 for R2
8 for R3 29

52

Relative Area (#LUTs) in Virtex 6
Ratio of a given Cipher Area/Area of AES-GCM

Area of AES-GCM = 3175 LUTs

1 20 for R2
12/13 for R3 29

53

Throughput/Area of AES-GCM = 1.020 (Mbit/s)/LUTs

Relative Throughput/Area in Virtex 6
vs. AES-GCM

E – Throughput/Area for Encryption
D – Throughput/Area for Decryption
A – Throughput/Area for Authentication Only
Default: Throughput/Area the same for all 3 operations

1 12 for R2
9 for R3 29

Conclusions &
Future Work

55

Conclusions

• First hardware implementation of AEZ
– Compliant with the CAESAR HW API
– Optimized for the Throughput/Area ratio
– Efficient
– Practical

• Places AEZ 12th in terms of the Throughput/Area ratio among
28 Round 2 CAESAR candidates benchmarked to date
(assuming the maximum message length of 211-1)

• Almost matches the performance of AES-GCM in hardware, while
at the same time offering an unprecedented level of security.

56

Possible Future Work

• Ability to increase the maximum message length
at the time of synthesis using a generic

• Ability to modify the authenticator length
at the time of synthesis using a generic

• Ability to modify the authenticator length
at the run time using the Reserved field of the API instruction

• Implementation with inner-round pipelining
• Lightweight implementation

57

• Detailed description of the circuit operation

Proceedings + ePrint version of the paper
(under development)

• VHDL Source Code

https://cryptography.gmu.edu/athena
Under: CAESAR
GMU Implementations of Authenticated Ciphers and Their
Building Blocks

More Details & Code

58

Thank you!

Questions?

Suggestions?

ATHENa: http://cryptography.gmu.edu/athena
CERG: http://cryptography.gmu.edu

Comments?

