
AEZ: Anything-but EaZy in Hardware

Ekawat Homsirikamol and Kris Gaj

Electrical and Computer Engineering Department
George Mason University,

Fairfax VA , USA
{ehomsiri, kgaj}@gmu.edu

Abstract. We provide the first hardware implementation of AEZ, a
third-round candidate to the CAESAR competition for authenticated
encryption. Complex, optimized for software, and impossible to imple-
ment in a single pass, AEZ poses significant obstacles for any hardware
realization. Still, we find that a hardware implementation of AEZ is
quite feasible. On Xilinx Virtex-6 FPGAs, our single-core design has a
throughput exceeding 3.4 Gbit/s, and uses about 4600 LUTs and about
1250 CLB slices. In terms of the throughput to area ratio, this per-
formance places it on the 12th position among 28 CAESAR candidate
families benchmarked during Round 2 of the competition (assuming the
key size of at least 96 bits, and the limit on the message size equal to
211 − 1 bytes). At the same time, AEZ targets a stronger notion of se-
curity against the cipher misuse than all other algorithms implemented
and ranked ahead of it in the Round 2 hardware benchmarking study.

Keywords: authenticated ciphers, AEAD, CAESAR, FPGA, hardware, MRAE.

1 Introduction

Authenticated encryption (AE) has become the preferred approach, in most set-
tings, for achieving symmetric encryption. This paper describes the first hard-
ware implementation of AEZ [1, 2], a new AE scheme that targets an unprece-
dentedly strong security notion. Let us back up and provide a bit of context.

The AE goal. An AE scheme takes in a key, a nonce, associated data (AD),
and a plaintext. For majority of schemes, it returns a ciphertext and a tag. For
some schemes, such as AEZ, it returns just a ciphertext (which is then typically
longer than the plaintext). Decryption reverses the process, using the same key,
nonce, and associated data (AD), as well as the ciphertext and, optionally, the
tag returned by encryption, as an input. It returns either a plaintext or an
indication of invalidity. There are two aims. Confidentiality requires ciphertexts
to be computationally indistinguishable from random bits, while authentication
assures that no one should be able to produce new and valid ciphertexts without
knowing the key.

At present, there are just two widely used AE schemes, CCM and GCM.
Both are standardized by ISO and NIST, but neither is particularly modern,
efficient, or versatile. To address this, the CAESAR competition for AE schemes
began in 2012, attracting some 57 submissions [3].

The AEZ scheme. AEZ [1,2] is one of the more unusual CAESAR candidates.
Where many submissions tried to excel in hardware efficiency, software efficiency,
or both, AEZ focused on a new and unusually strong security notion. That goal,
robust authenticated encryption (RAE), guarantees all that a conventional AE
scheme does and more. First, it must work as well as possible even if nonces do
repeat. That is the goal of misuse-resistant authenticated encryption (MRAE)
[4]. But an RAE scheme goes further, achieving this as-good-as-possible behavior
for any choice of ciphertext expansion (how much longer a ciphertext is than a
plaintext), including none at all.

The cost of RAE. Proponents of RAE and MRAE think that schemes designed
to meet these ends will be easier to use and less prone to misuse. But achieving
these goals comes at a cost, starting with the fact that they can’t be achieved by
any one-pass scheme. (A one-pass scheme reads each input and writes each out
left-to-right, employing a constant amount of memory.) To encrypt, you must
make two passes over the plaintext or employ a buffer as big as the plaintext
is long. This is no doubt the reason why, despite the importance of nonce-reuse
security, very few CAESAR candidates tried to achieve MRAE. The only Round
2 schemes the authors are aware of are AEZ, Deoxys, HS1-SIV, and Joltik. The
comparison among the four of the above schemes in terms of security is beyond
the scope of this paper. However, for fairness, it should be mentioned that the
security provided by AEZ has a birthday bound of 264 blocks, limited by the state
size of the algorithm, which is among the lowest among the Round 2 CAESAR
candidates. That means that there are easy distinguishing and forging attacks
by the time the adversary queries AEZ with about 264 blocks of message, AD, or
nonce. However, the users are protected against these attacks by staying below
248 bytes of data (about 280 TB), by that time, they need to rekey. Increasing this
birthday bound was clearly and explicitly a non-goal for the designers of AEZ [1,
p. 13]. On the hardware benchmarking side, no VHDL/Verilog implementations
of the nonce misuse resistant variants of Deoxys and Joltik, compliant with the
CAESAR Hardware API, have been reported to date.

Achieving RAE (which, again, goes beyond MRAE) is an especially tall or-
der, encompassing the ability to encipher arbitrary-length strings. AEZ aims
to achieve this with about the efficiency of AES-CTR. The result is the most
complicated symmetric encryption scheme we know. AEZ’s description spans 1.5
pages of dense pseudocode (excluding the definition of the AES round function
and Blake2b) [1].

After explaining that AEZ’s name was meant to suggest both authenticated
encryption (AE) and easy (EZ), its authors warn that the alleged easiness refers
only to ease of use. “Writing software for AEZ is not easy,” they write, “while
doing a hardware design for AEZ is far worse” [1, pp. 2]. After some interaction

2

with us, the AEZ designers added in that “From the hardware designer’s per-
spective, AEZ’s name might seem ironic, the name better suggesting anti-easy,
the antithesis of easy, or anything-but easy” [1, pp. 2–3]. We note that a prior
attempt at implementing AEZ by a Master-level student did not succeed, the
designer concluding that AEZ was “hardly suitable for hardware” [5, p. 30].

Contributions. In this paper we overcome these difficulties and develop a fully-
functional hardware realization of AEZ. Our realization conforms to the CAE-
SAR Hardware API used in the CAESAR competition [6]. We implement every-
thing in the AEZ spec except for the parts that handle arbitrary key lengths,
arbitrary ciphertext expansion, and vector-valued AD. Please note that we are
not aware of any other Round 2 CAESAR candidate offering arbitrary ciphertext
expansion and vector-valued AD.

Our implementation achieves roughly the same throughput as the comparable
implementation of AES-GCM, and takes almost the same area as the compa-
rable implementation of OCB. In terms of the throughput to area ratio, our
design ranks no. 12 out of 28 benchmarked Round 2 families (assuming the key
size greater or equal to 96, and the limit on the message size equal to 211 − 1
bytes). It trails AES-GCM, only because of the larger area. It outperforms many
other AES-based CAESAR candidates, such as CLOC, ELmD, OCB, AES-OTR,
SILC, POET, AES-COPA and SHELL.

2 AEZ Overview

AEZ is built on a generalized block cipher, Encipher. This object is like a conven-
tional block cipher except that (1) you can feed it any number of bytes (which
will get enciphered into the same number of bytes), and (2) you can also provide
a tweak, which, in this case, is a vector of strings. The tweak is a non-secret value
that individualizes the permutation associated to the key.

To create an RAE scheme from its generalized block cipher, AEZ does the
following: it takes the input M and it appends to it τ zero bits, where τ is the
ciphertext expansion the user wants. Our realization assumes τ = 128. Then
you encipher. The result is the final ciphertext. To decrypt with AEZ, reverse
the process, deciphering the ciphertext to get an augmented message. If the
last τ bits of this augmented message is anything but the all-zero string, the
ciphertext is invalid. Otherwise, the rest is the plaintext. For both enciphering
and deciphering one uses a tweak that consists of three components (assuming
a string-valued AD): an encoding of the ciphertext expansion τ , the nonce N ,
and the AD A.

Fig. 1 describes the generalized block cipher Encipher. The message, M , is
already assumed to be extended with τ zeros that we wish to encipher. Initially,
attend only to the top-left and top-right portions of the diagram, and assume
thatM =M1M

′
1 · · ·MmM

′
mMuMvMxMy has a multiple of 32 bytes (but at least

64 bytes). Each subscripted variable is 16 bytes.
The boxes labeled by pairs (j, i) in the diagram show the application of a

tweakable block cipher (TBC). The key is always K, the key we wish to encipher

3

Mv

C v

M1 M1

C1 C1

X1

S

Mx My

Cx Cy

-1, 1

Mm Mm

Cm Cm

Xm

Y1

S S

’’

’’

Zl-1Z1

ZlZ1

L R

 L R

X

S-1, 5

0, 5

0, 50, 00, 0

2, 1 2, m

0, 0 0, 0

0, 11, 1 1, m

1, m1, 1 0, 2

i+2, 1 i+2, l - 1

Y

¢i

-1, 2

¢

¢

¢  1
0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

¢  0

¢  3

¢  2

¢  6

¢  5

¢  7

Xv

Yv
Ym

* *

¢  4

...

10*

...

...

 Cu

-1, 4

0, 4

0, 4

S

Xu

Yu

 Mu

¢i

Zl

Zl -1

i+2, 1 i+2, l - 1

i+2, l

i+2, 0

Fig. 1: Illustration of AEZ enciphering, adapted (with permission) from Figure 5
of the AEZ spec [1]. Rectangles with pairs of numbers are tweakable block ci-
phers, the pair being that tweak (the key, always K, is not shown). Top row:
enciphering a message M of (32 or more bytes) with AEZ-core. The i-block (top
left) is used for the bulk of the message, but the xy-block (top right) comprises
the last 32 bytes, while the uv-block (top middle) comprises the prior 0–31 bytes.
(The picture shows a uv-block of 17–31 bytes.) The string X is computed via
X ← X1⊕· · ·⊕Xm⊕Xu⊕Xv; if Xu or Xv is undefined then this term is omitted
in computingX. The string Y is computed analogously.Bottom left: AEZ-hash
computes ∆ =

⊕
∆i from a vector-valued tweak encoding the ciphertext expan-

sion τ , the nonce N , and the AD A. Its i-th component Z1 · · ·Z` is hashed as
shown. Bottom right: AEZ-hash, when operating on a string M = L R of
16–31 bytes. More rounds are used if M has 1–15 bytes.

under, while the pair in the box is the tweak. Thus the box labeled (1, 1) maps K
and the 16-byte M ′1 to an unnamed 16-byte value that is xor’ed with M1 to get
another 16-byte value, which is fed into the block cipher labeled (0, 0), and so
on. The figure’s caption should make the notation clear.

The middle-top portion of the diagram hints at what happens when the
plaintext is not a multiple of 32 bytes. For all other AE schemes we know,
messages that are not multiples of the block size give rise to a final fragment

4

that includes all the leftover bytes of the message. For AEZ, any leftover bytes
form the penultimate chunk instead. This is useful because it ensures that, when
16 or fewer zero bytes are appended to the end of a message, they will always land
in a specific block, rather than spanning two. If we want to shortcut the rejection
of invalid messages, this feature has a potential to simplify the implementation.

To encipher messages with fewer than 32 bytes, one bypasses the top row of
Fig. 1 completely and runs the Feistel network shown at the bottom right in-
stead, splitting the message M into equal-length halves. This algorithm is called
AEZ-tiny; the top row is AEZ-core. The two-algorithm approach, one for short
messages and another for longer ones, mirrors a large body of cryptographic work
in which techniques for “format preserving encryption” (FPE) do not resemble
the modes of operation for a “wideblock block cipher.”

The TBC used in AEZ is based on AES4 and AES10, which are 4 or 10 round
versions of AES. The first is depicted in Fig. 1 as a (j, i)-labeled rectangle for
j ≥ 0; the second is a (j, i)-labeled square for j = −1. Neither uses the AES key
schedule. In the end, the bulk of the work for enciphering 32 bytes from a long
message—one “column” from the top-left of the figure—is the 20 AES rounds
associated to the five AES4-based TBC calls. So 10 AES rounds per 16 bytes,
the same overhead as AES itself.

One further detail concerns the processing of the empty message M = ε,
which AEZ gives special attention to since this is a fairly natural way to realize
a message authentication code, the string that is authenticated being the AD.

Among the pleasant characteristics of AEZ is that only the forward direc-
tion of the TBC is ever needed, and enciphering and deciphering are virtually
identical. Our hardware design benefits from these choices.

3 Hardware Implementation Challenges

AEZ is the most challenging CAESAR candidate to implement in hardware. The
reasons for this are summarized below.

Three algorithms in one. AEZ defines three substantially different algo-
rithms: (a) AEZ-prf to process empty messages, (b) AEZ-tiny to process mes-
sages of the size smaller than 32 - authenticator length (in bytes) (= 16 bytes
for recommended values of parameters), and (c) AEZ-core to process all remain-
ing message sizes. Although these algorithms share the same major building
block, TBC, they have a very different internal structure, and implementation
requirements. A hardware designer is faced with the decision to either implement
these algorithms separately (without resource sharing), which may substantially
increase the circuit area, but simplifies scheduling and control, or base the im-
plementation on a single instance of TBC, which has the opposite implications.
In our design, we chose the latter approach in order to address the already quite
substantial area requirements of AEZ.

5

Two-passes. As shown in Fig. 1, AEZ-core requires two passes. The first pass is
used to calculate S, which is a function of the nonce (public message number), all
blocks of the associated data, all blocks of the message, the authenticator length
τ , and the key. In the second pass, S is used in calculations involving all message
blocks. A hardware designer is faced with the decision to either repeat approx-
imately 40% of computations involving all message blocks, already done in the
first pass, or to store intermediate results of the size of the entire message in in-
ternal memory. In order to avoid a substantial performance penalty, and keeping
in mind that (a) packet sizes in modern communication protocols are relatively
small (typically at or below 1500 bytes), and (b) modern FPGAs contains large
blocks of memory, which often remain unused by the main cryptographic and
data processing tasks, we have decided to follow the latter approach.

Input re-blocking. In a typical hardware implementation of an authenticated
cipher, input blocks are provided to the cipher module sequentially, one by one.
Only one block is processed at a time. All blocks, except the last one have the
same length. The last block is often just padded, and then processed similarly
(although rarely identically) as other blocks. After each message block is pro-
cessed, the corresponding ciphertext block leaves the cipher module. As shown
in Fig. 1,

– in AEZ-tiny, the blocks L and R have variable length depending on the size
of the message, |M |,

– in AEZ-core, the blocks Mu and Mv have variable length depending on the
size of the message, |M |. On top of that (a) neither of these blocks is the
last block of the message, and (b) for certain message lengths |Mu|=0. As a
result, the implementation of AEZ must internally create and process blocks
of data of unconventional sizes, which amounts to input "re-blocking". In
hardware, such operation requires variable shifts and rotations, as well as
clearing (also known as masking) of variable-size fragments of a block. All
these functions have quite substantial area requirements. Additionally, "re-
blocking" often requires simultaneous processing of at least two subsequent
message blocks, before any of the corresponding ciphertext blocks is released.

Treatment of incomplete blocks. The treatment of incomplete blocks is a
particularly complex operation in AEZ. As already mentioned in the previous
section, these blocks are not the last blocks of the message, and in spite of
that still require padding. Additionally, as shown in Fig. 1, they also require
substantially different parameters j and i of the Tweakable Block Cipher (Ej,i

K).

Need for pre-computations. In order to support the efficient implementation
of TBC, the precomputations are highly desirable. The time of these precompu-
tations and the amount of memory required to store the precomputed look-up
tables is dependent on the maximum size of the message and the maximum size
of associated data. See Section 4.2 for details.

6

Post

Out

Data

Two−Pass
FIFO

FIFO
CMD

Public
Data In

AEAD

Processor

Control

CipherCore (AEZ)

Datapath
Processor

Pre

Secret
Data In

Fig. 2: Top-level design of a two-pass authenticated cipher.

Scheduling. As a result of all the aforementioned factors, the complexity of
scheduling and the subsequent difficulty of developing a controller for the hard-
ware implementation of AEZ exceeds the difficulty of any other symmetric cryp-
tographic algorithm the authors are aware of, including all other two-pass CAE-
SAR candidates.

4 Design Architecture

4.1 Interface, Protocol, and Design Parameters

Our implementation is based on the CAESAR Hardware API for Authenticated
Ciphers, specified in [6], and its Appendix [7]. This API specifies both the
interface and the detailed protocol for communication with the core. On top of
that, for high-speed implementations, the authors of this API suggest the use
of a top-level design, shown in Fig. 2, and provide the corresponding supporting
codes implementing the Pre-Processor, Post-Processor, and CMD FIFO. Our
implementation takes full advantage of these resources.

Our hardware design is fully optimized for the maximum throughput to area
ratio. Its API and performance makes it suitable for use as a part of practical
industry-grade systems based on standard bus interfaces such as ARM AXI-4
(Advanced eXtensible Interface 4) [8].

The hardware design presented in this paper aims to be as complete as the
software implementation for the Round 2 version of AEZ (v4), developed by
the AEZ team [9], [10]. One significant difference between the software API and
the hardware API is as follows: In the software API [11], the only output from
authenticated encryption is the Ciphertext, denoted as c, of the length clen. In
our hardware API, the output from authenticated encryption is divided into the
Ciphertext and the Tag. In case of AEZ, which does not explicitly specify the
tag, the tag is understood as follows. For non-empty messages, the tag is a result
of enciphering a sequence of zeros, called an authenticator, of the length of τ
bits, using the AEZ Encipher algorithm. For empty messages, the tag is a result
of calculating the special AEZ-prf function of nonce, associated data, and the
authenticator length τ .

7

The supported parameters are: key length = 384 bits, nonce length = 96 bits,
authenticator length (denoted as ABYTES for the length in bytes and τ for the
length in bits) = tag length = 16 bytes = 128 bits, maximum AD = 210 − 1
bytes, and maximum message/ciphertext size = 211 − 1 bytes. The maximum
sizes of the message, ciphertext, and AD were chosen to support the maximum
length of the Ethernet v2 packets [12], equal to 1500 bytes. Additionally our
choices limit the amount of memory required to implement the Two-Pass FIFO.
All these choices are fully compliant with the official CAESAR Hardware API
for Authenticated Ciphers, approved by the CAESAR Committee [6].

Our design supports both authenticated encryption and authenticated de-
cryption operation, in such a way that only one of these two operations can
be executed at a time (half-duplex). This way our design demonstrates the al-
gorithm’s ability to share resources between encryption and decryption. Key
scheduling, padding and handling of incomplete blocks is implemented fully in
hardware. The result of the decrypted message authentication (Success or Fail-
ure) is calculated within the core itself. Any unused portions of the last words
of outputs are cleared (filled with zeros) before releasing these words outside of
the cipher core.

The secret data input ports, used to enter the key, are separated from the
public data input ports, used to enter all remaining data. The Public Data Input
(PDI) and Data Output (DO) ports have the data port width equal to 64 bits,
the Secret Data Input (SDI) port has the width of 32 bits. Our implementation
has only one clock and supports only one input stream at a time.

4.2 Tweakable Block Cipher

Design. AEZ is built on top of the Tweakable Block Cipher (TBC) denoted
as Ej,i

K . In Fig. 1, each call to TBC is denoted as a rectangle with parameters
(j, i). The parameter j has discrete integer values -1, 0, 1, and 2 for processing
message blocks, and values greater or equal to 3 for processing of nonce and
associated data. The parameter i has values varying between 0 and m. For
processing of messages, the dependence between the message length (in bytes)
and m is as follows: 32 · (m+1) ≤ message length < 32 · (m+2). For processing
of messages, m + 1, is the number of complete 32-byte message block pairs in
Message extended with the 16-byte authenticator. For processing of AD, l is
the number of complete 16-byte blocks of AD. When processing incomplete AD
blocks, as well as when j = 0 or −1, i is set to special values shown in Fig. 1.

The block diagram of the TBC module is shown in Fig. 3. Primary ports of
the module are shown in bold font: X is the data input, Y is the result, K is
the key. The shaded region is used to calculate ∆, which is a variable dependent
on the key K and the parameters j and i. The remaining region is used to
perform AES calculations on X⊕∆, and an optional XOR of the result of these
calculations with ∆.

In the shaded region, the x2 module represents the Galois field multiplica-
tion by two. I-RAM and J-RAM are two memories used as look-up tables for the
precomputed expressions of the form of 2P I and 2PJ , where P = 0..15. The T

8

register is used to store intermediate values used for the initialization of I-RAM
and J-RAM. The ∆i+1 register is used for computing the proper value of ∆ to be
used by the unshaded region.

Based on the pseudocode of AEZ [1, p. 7] and our assumption about the size
of Nonce (96 bits), ∆ can take the following values:

– iJ for j = −1, 1 ≤ i ≤ 5
– iI for j = 0, i = 0, 1, 2, 4, 5, 6
– (23+b(i−1)/8c + ((i− 1) mod 8))I for j = 1, 2, 1 ≤ i ≤ m
– 2j−3L for j = 4, 5, i = 0
– 2j−3L⊕ (23+b(i−1)/8c ⊕ ((i− 1) mod 8))J for j = 3, 5, 1 ≤ i ≤ l.

where,

– j = 3, 4, and 5 are used only inside of AEZ-hash(K,T), where T=([τ] 128,N,A).
– (j = 3, i = 1) is used to process the authenticator length, expressed using

128-bits, [τ] 128.
– (j = 4, i = 0) is used only to process a 96-bit Nonce, N, i.e., one incomplete

block.
– (j = 5, i ≥ 0) is used only to process AD, which may include an incomplete

block (for which i = 0).

Under the assumption that the maximum AD size is 210 − 1 bytes and the
maximum message size is 211−1 bytes, the maximum value of bn = i−1 is equal
tomax(bn) = max(i−1) = max(m−1, l−1) = max(l−1) = b 2

10−1
24 c−1 = 26−1.

Thus, max(3 + b i−18 c) = 3 + b 2
6−1
8 c = 3 + 7 = 10 ≤ 15.

The total number of clock cycles required to pre-compute ∆ is based on the
number of clock cycles required to calculate the longest possible ∆ term, shown
in Eq. (1).

∆← 2j−3L⊕ (23+b(i−1)/8c ⊕ ((i− 1) mod 8))J (1)

The generalization of Eq. (1) to encompass all possible values of j is shown in
Eq. (2), where Init = 2j−3L or 0, bn = i− 1, and A = I, J , or 0.

∆← Init⊕ (bn mod 8)A⊕ (23+bbn/8c)A (2)

Further transformation to convert all terms into 2P representation is shown in
Eq. (3), where bn[b] represents the bit location of bn.

∆← Init⊕ (bn[0])A⊕ (2 · bn[1])A⊕ (4 · bn[2])A⊕ (23+bn[6:3])A (3)

Each term in Eq. (3) requires one clock cycle to calculate. As a result, the
maximum number of clock cycles necessary to calculate ∆ is 5.

In the unshaded region, the ∆i register is used to store the computed ∆ for
the final, conditional ⊕ ∆ operation. This register also frees up the ∆i+1 register
in the shaded region to allow the pre-computation of ∆ for the next input block.

The State register is used to store an intermediate value of the state, used
as an input to the combinational AES round transformation, denoted by AES,

9

AES

I

J

L

ROM

3

0

6 2

x2

44

4

0 1

round

+3

6

3

x2

i

i+1

0

0

1 2 3 4

0 1

0 0 1

0

1
I−RAM

0

1

2

384

5

4
type

rkey

L

J

I

L

J−RAM

addr

addr

I J

210

x2

T

State

X

Y

K

BN

bn

Fig. 3: Block diagram of TBC. Buses have the width of 128 bits unless specified
otherwise.

or as an output from the entire TBC function. I, J, and L registers hold three
separate 128-bit portions of the 384-bit K. These values serve as round keys to
the AES round module. The output of ROM is used to select each round key using
the 4-bit round signal and the 2-bit type signal. The type is used to select a key
set (k1, k2, or K). The reader should refer to the pseudocode of AEZ, algorithm
Ej, i
K (X), for the exact meaning of k1 and k2 [1, p. 7]. The total number of clock

cycles required to compute the AES-based transformation, AES10k, AES4k, or
AES4kj , is equal to the number of AES rounds plus 1. Thus, depending on a
particular transformation, this number is equal to either 5 or 11 clock cycles.

Operation. During the one-time pre-calculations, dependent only on the key
K, the I, J , and L registers are initialized with the appropriate portions of K.
Then, the RAM modules in the shaded region are filled with 2P · A, where A
= I or J , and P = 0..15. The initialization of I-RAM is achieved by loading I
to the T register. The T value is then doubled during each of the subsequent 15
clock cycles. All intermediate values of T are stored at the consecutive locations
of I-RAM. The counter round, incremented from 0 to 15, is used to address I-RAM
during these pre-computations. The same procedure is used for the initialization
of J-RAM.

Once the look-up tables stored in I-RAM and J-RAM are initialized, the pro-
cessing of inputs X can start. A typical operation for each 128-bit block X is
separated into two stages. The first stage, located in the shaded region of the

10

Table 1: Modes of Operation for TBC. Note: α = 23+bn[6:3]A where A = I or J .
Finalization denotes the final XOR with ∆.

mode (j, i)
First Stage Second Stage

(pre-computation) (main round)
Init I or J α round Key Finalization

0 (0, x) 0 I No 4 k1 No
1 (1, x) 0 I Yes 4 k1 No
2 (2, x) 0 I Yes 4 k2 No
3 (3, 1) L J Yes 4 k1 Yes
4 (4, 0) 2L J No 4 k1 Yes
5 (5, 0) 4L J No 4 k1 Yes
6 (5, x) 4L J Yes 4 k1 Yes
7 (-1, x) 0 J No 10 K No

block diagram, pre-computes the value of ∆, which is dependent on the values
of i, j, and K. The second stage, located in the unshaded region, uses the calcu-
lated ∆ to perform the AES-based computations. The operations of these two
stages are categorized into different modes of operation depending on the input
parameters j and i, as shown Table 1.

The two stages operate in tandem, with specific actions determined by the
mode, dependent on the values of j and i, and used by the controller. In case
the second stage requires a much longer computation time (mode = 7), the sub-
sequent operation of the first stage is stalled until the second stage is completed.
For each mode of operation, the first stage begins its operation from the initial-
ization of the ∆i+1 register with the Init value. If j > 0 and i > 0, ∆i+1 is then
XORed with (bn mod 8) A = 2bn[0]A⊕2bn[1]A⊕2bn[2]A using three clock cycles.
In the last clock cycle of the first stage computations, ∆i+1 is XORed with α.

The second stage, in the first clock cycle, XORs the pre-computed ∆ value
with the input X. The remaining clock cycles are spent on computing the AES
rounds. Finalization is performed in the last clock cycle, if required.

Both stages operate in parallel, with the second stage performing calculations
dependent on the current inputs X, j, and i, and the first stage performing
calculations dependent on the next set of inputs j and i.

4.3 CipherCore

The CipherCore Datapath of AEZ is shown in Fig. 4. In order to limit the size of
this block diagram and preserve its readability, control signals, serving as inputs
to majority of medium-level components, such as TBC, NPAD, MASK and PAD, are
not explicitly shown in this diagram.

TBC is the main encryption module. Its internal structure and operation is
described in Section 4.2. This module serves as a focal point for all processing
needs in our design. It processes 128 bits of data at a time (half of a block pair
for message/ciphertext and a full block for associated data). The surrounding

11

bdi

MASK

Byte
Barrel

Rotator

==?

==?

round
tiny

123 0567 4

2 1 0

10 32
2

0

LSHF4

0

1PAD

1 2 30

95

0

0

1

2

0

0

2 1 0

0

01

01

msg_auth_valid

0

10

XYHash

0

0

1

2

0

0 1

bdo

XY

S

L

L

T

O

TBC

0

X6

key

0
4

0

NPAD

0

1

fdo

fdi
fdi

τ

bdo

bdi

bdi

(tag)

bdi

(npub)

(data)

(data)

(data)

(exp_tag)

Fig. 4: The CipherCore Datapath of AEZ. Buses have the width of 128 bits unless
specified otherwise.

logic is used to facilitate the transfer of data and storage of intermediate results
for the main processor. The following description summarizes the usage of the
primary auxiliary units.

The T register holds data that is being operated on by TBC. It is also used as
a temporary register to store intermediate values when data shifting is required.
The XY register holds the accumulated value of ∆ from Fig. 1 or ∆⊕XY where
XY = XY1 ⊕ ... ⊕XYm ⊕XYu ⊕XYv and XY = X for the first pass, and Y
for the second pass.

The S register is used to hold the S value calculated at the end of the first
pass, during processing of Mx and My, as shown in Fig. 1. The O register is used
to hold any output that needs to be delayed in order for the output format to
be the same as in the software implementation. The NPAD module performs 10*
padding for the 96-bit nonce. The MASK and PAD modules are used to perform
masking and padding operations required during processing of the last-but-one
message block pair with indices u and v, as well as during AEZ-Tiny operations.

The Byte Barrel Rotator module is a variable rotation module. It can rotate
by any integer multiple of a full byte. LSHF4 is a 4-bit left shifter used only for

12

the AEZ-Tiny operation. It is required when an input block is of an odd size in
bytes, and data needs to be split at a boundary of a nibble.

5 Timing Analysis

5.1 Latency

The design latency is given by Eq. (4). It is a function of THash, TPRF , TTiny

and TCore, shown in Eqs. (5), (6), (7), and (8), respectively. TCore is a function of
TFull, TUV , and TXY shown in Eqs. (9), (10), and (11), respectively. In all these
equations |AD| and |M| represent the lengths of AD and message, respectively,
in bits.

The detailed formulas are important, as they allow the accurate timing analy-
sis for multiple AD and message sizes, and not only for the case of long messages.

Latency = Tkeysetup + THash + TPRF + TTiny + TCore

= 36 + THash + TPRF + TTiny + TCore

(4)

THash = 15 +

⌈
|AD|
128

⌉
· 5 (5)

TPRF =

{
0, if |M | > 0

14, otherwise
(6)

TTiny =

{
0, if |M | ≥ 128

49, otherwise
(7)

TCore =



0, if |M | < 128

12 + TXY , elif |M | = 128

12 + TUV + TXY , elif (|M | − 128) < 256

12 + TFull + TXY , elif (|M | − 128) mod 256 = 0

12 + TFull + TUV + TXY , otherwise

(8)

TFull = 25 ·
⌊
|M | − 128

256

⌋
+ 5 (9)

TUV = 11 ·
⌈
(|M | − 128) mod 256

128

⌉
+ 13 +

{
2, if (|M | − 128) mod 256 = 128

4, otherwise
(10)

TXY =

{
38, if (|M | − 128) mod 256 > 0

32, otherwise
(11)

In Fig. 5, we illustrate the quite complex dependence of the (a) latency in
clock cycles, and (b) number of clock cycles per byte, on the size of the message in
bytes, assuming an empty AD. Based on Fig. 5(b), the number of clock cycles per
byte reaches the close-to-optimal performance already at message sizes around
50 bytes.

13

(a) Latency vs. Message Size (b) Cycle-per-byte vs. Message Size

Fig. 5: The AEZ hardware module latency and the number of cycles per byte as
a function of the message size for |AD| = 0

5.2 Throughput

Throughput for authenticated encryption and decryption of long messages is
given by Eq. (12) and Eq. (13). Eq. (12) applies when |M | = 0, and |AD| � 0,
where � denotes "much bigger". It is based on the time it takes to perform the
AEZ Hash operation (bottom left diagram of Fig. 1). Similarly, Eq. (13) applies
when |AD| = 0, and |M | � 0. It is based on the time it takes to perform AEZ
Core operation on a full block pair (top left diagram of Fig. 1).

ThroughputAD =
128

5
· ClkFreq. (12)

ThroughputM =
256

25
· ClkFreq. (13)

6 Benchmarking in Hardware

6.1 Hardware Results and Comparison with Other CAESAR
Candidates

The resource utilization and the maximum clock frequency of the main compo-
nents of AEZ on Virtex-6 FPGA is shown in Table 2. The TBC module requires
about 48% of the flip-flops and 37% of the total LUTs as compared to the Ci-
pherCore module. The speed of the design is reduced by a factor of 8% when the
unit is integrated with the surrounding logic. The complete unit with the CAE-
SAR Hardware API support (AEAD) requires an additional 15% of flip-flops
and 10% of LUTs, on top of the resources required by the CipherCore module.
The maximum frequency of operation remains exactly the same.

The comparison with all other Round 2 CAESAR candidates (except Tiaoxin),
using the same hardware API, is summarized in Table 3. All results have been
obtained using exactly the same FPGA device and FPGA tool versions. Bench-
marking involved the optimization of tool options using ATHENa [13], with the

14

Table 2: Components analysis of AEZ unit on Virtex-6 xc6vlx240tff1156-3 FPGA
device

Resource Utilization Frequency
FFs LUTs (MHz)

TBC 927 1527 362
CipherCore 1983 4166 335
AEAD 2347 4597 335

same optimization scheme and effort applied to all candidates. The source of
these results is the ATHENa database of results [14], reporting FPGA perfor-
mance for all implementations of Round 2 candidates submitted for benchmark-
ing in June–August 2016. Each Round 2 CAESAR candidate family (except
Tiaoxin) is represented in this study by one or more variants recommended by
the submitter teams. For all the candidates and AES-GCM, the throughput is
based on either encryption or decryption throughput, whichever is lower. Only
the performance of the best variant in terms of the Throughput to Area ratio is
reported in [14] and in Table 3, with LUTs used as a primary Area metric.

Since based on the CAESAR Hardware API [6], the implementations of
single-pass authenticated ciphers are expected to support all message lengths
≤ 232 − 1, and implementations of two-pass authenticated ciphers are expected
to support all lengths ≤ 211 − 1, it is natural and fair to compare implemen-
tations of both types of ciphers for the maximum message length common for
both types of ciphers, which is 211 − 1.

Additionally, 2Kbytes is a practical limit for majority of secure networking
protocols, such as IPSec – a primary target for high-speed hardware implemen-
tations of authenticated encryption. Authenticated encryption without interme-
diate tags is in general not a good match for applications requiring protection of
large volumes of data-at-rest, due to large access times for reading and writing.

The implementers of 7 single-pass authenticated ciphers included in our
comparison (AES-GCM, Deoxys, Joltik, OCB, OMD, PAEQ, and SCREAM)
specifically supported the two possible maximum AD/message lengths. All cor-
responding results presented in Table 3 have been generated with the choice of
the maximum AD/message equal to 211−1. This choice has appeared to benefit
in a noticeable way only the two of them, OCB and OMD, using a precomputed
look-up table, with the size dependent on the maximum AD/message length.

For the remaining candidates, we contacted the designers of the implemen-
tations listed in Table 3, and asked them explicitly whether they see any way of
optimizing their designs (in terms of area and/or maximum clock frequency) in
case the maximum AD/message length is smaller or equal to 211 − 1. None of
the designers responded positively to this question. Similarly, our own analysis
and preliminary results led to the conclusion that the maximum benefit in terms
of the throughput to area ratio, resulting from applying a lower limit on the
AD/message length, is not likely to exceed 3% for any of the remaining one-pass
Round 2 CAESAR candidates.

15

On top of that, both single-pass and two-pass algorithms require external
memory for the complete functionality, including the temporary storage of de-
crypted message. In an optimized implementation of the entire system including
a two-pass AEAD core, the Two-Pass FIFO and the Output FIFO could be
implemented using the same resources. The amount of logic (LUTs) required to
multiplex between these two functions of an external memory would be negligible
compared to the size of the entire system.

As a result, we believe that the need for an external Two-Pass FIFO, im-
plemented using dedicated FPGA resources, such as Block RAMs, does not put
two-pass algorithms in any noticeable disadvantage that could affect the ranking
of the candidates (especially to the extent higher than other, more important
factors, such as different designer skills and coding styles, different amount of
time and effort spent on optimization, etc.)

Based on the results presented in [14], it is fair to say that AEZ outperforms
all AES-based CAESAR candidates, other than AEGIS and Deoxys, such as
CLOC, ELmD, OCB, AES-OTR, SILC, POET, AES-COPA and SHELL. Our
implementation also outperforms the implementation of the only other two-pass
Round 2 candidate variant, reported in [14], HS1-SIV. Our implementation of
AEZ beats the equivalent implementation of HS1-SIV by a factor of 1.23 in
terms of Throughput, 1.83 in terms of Area, and a combined factor of 2.26 in
terms of the Throughput/Area ratio. Its Throughput to Area ratio is lower only
than that of 11 mostly permutation-based algorithms, none of which fulfills the
requirements of robust authenticated encryption (RAE), or even misuse-resistant
authenticated encryption (MRAE).

6.2 Comparison with the Optimized Software Implementation

The preliminary results of the software benchmarking using SUPERCOP place
AEZ among the top 5 authenticated ciphers on the amd64-architecture plat-
forms [15]. The software benchmark of the optimized software implementation,
available at [10], was done on a Skylake-S Intel Core i5-6600 3.3 GHz. The
compiler and compilation flags used were: GCC 5.5 with "-march=native -O3".
The optimized software implementation was able to achieve the performance of
0.64 cycles-per-byte, equivalent to the throughput of 41.25 Gbit/s for long mes-
sages. Comparing to our hardware AEZ core performance on Virtex-6 FPGA,
the software is able to achieve approximately 12 times higher throughput, while
running at about 10 times higher clock frequency.

Clearly, an optimized software implementation of an AES-based authenti-
cated cipher, running on a modern microprocessor, can easily outperform the
corresponding single-core hardware implementation, not just for AEZ, but for
majority of other CAESAR candidates. However, one must remember that the
hardware resources required by a modern microprocessor, as well as power and
energy consumption, are likely much higher than resources required by a single
core of AEZ.

On modern FPGAs and All-Programmable Systems on Chip (such as Xilinx
Zynq), multiple AEZ cores can be placed and run in parallel to either hard or soft

16

Table 3: Comparison with other CAESAR candidates, with key sizes greater or
equal to 96 bits, on Virtex 6 FPGA.

Frequency Throughput Area TP/A
(MHz) (Mbit/s) (LUTs) (SLICEs) (Mbit/s/ (Mbit/s/

LUTs) SLICEs)
1 MORUS 179.7 46002 3898 1216 11.801 37.831
2 ACORN 347.7 11127 1194 421 9.319 26.430
3 TriviA-ck 300.2 19213 2310 895 8.317 21.467
4 ICEPOLE 304.0 44464 5734 1995 7.754 22.288
5 AEGIS 203.1 52001 7980 2143 6.516 24.266
6 Ketje 229.5 7345 1270 456 5.783 16.107
7 NORX 170.5 16368 2968 1022 5.515 16.016
8 ASCON 361.0 5134 1620 489 3.169 10.499
9 STRIBOB 276.1 11750 4839 1376 2.428 8.539

10 Keyak (River) 163.6 7417 6234 1751 1.190 4.236
AES-GCM 278.3 3239 3175 1053 1.020 3.076

11 Deoxys (NR-128-128) 327.3 2793 3142 951 0.889 2.937
12 AEZ 335.3 3434 4597 1246 0.747 2.756
13 CLOC 254.6 2963 3983 1154 0.744 2.568
14 ELmD 247.5 3168 4302 1607 0.736 1.971
15 OCB 292.7 3122 4249 1348 0.735 2.316
16 PRIMATEs-GIBBON 224.0 1280 1807 653 0.708 1.960
17 Joltik (NR-128-64) 439.9 880 1292 524 0.681 1.679
18 Minalpher 280.9 1831 2879 1104 0.636 1.659
19 PAEQ 258.9 4537 8328 2300 0.545 1.973
20 AES-OTR 256.9 2741 5102 1385 0.537 1.979
21 SCREAM 170.4 1039 2052 834 0.506 1.246
22 Pi-Cipher 170.0 1740 3535 1077 0.492 1.616
23 SILC 280.7 1562 3378 989 0.462 1.579
24 PRIMATEs-HANUMAN 225.1 693 1769 626 0.392 1.107
25 POET 231.2 2959 7695 2444 0.385 1.211
26 HS1-SIV 221.7 2769 8392 2219 0.330 1.248
27 AES-COPA 214.9 2500 7754 2358 0.322 1.060
28 OMD 242.2 940 3562 1243 0.264 0.756
29 AES-JAMBU (SIMON) 209.8 186 1376 453 0.135 0.411
30 SHELL 16.3 522 81197 22830 0.006 0.023

embedded microprocessor core (such as ARM or MicroBlaze). Their availability
would free the microprocessor to perform other critical tasks. It would also allow
significantly outperforming a single dedicated microprocessor core. For example,
the largest Xilinx Virtex-6 FPGA (XC6VLX760) can host up to 95 AEZ Cores,
reaching throughput in excess of 326 Gbit/s.

Results of software implementations of AEZ on multiple other platforms,
including ARM, can be found in [15].

7 Conclusions

We have developed an efficient implementation of AEZ that outperforms com-
parable implementations of the majority of other AES-based Round 2 CAESAR
candidates. It places 12th in terms of the Throughput to Area ratio, in the
ranking of 28 candidates participating in the hardware benchmarking study (as-
suming the maximum message length of 211−1 bytes), and is outperformed only

17

by single-pass, mostly permutation-based algorithms. Our preliminary analysis
strongly suggests that AEZ can outperform majority of the CAESAR candi-
dates and the current standard, AES-GCM, in software, approximately match
the performance of AES-GCM in hardware, and at the same time offer a new
unprecedented level of resistance against the cipher misuse.

References

1. V. T. Hoang, T. Krovetz, and P. Rogaway, “AEZ v4.1: Authenticated Encryption
by Enciphering,” Oct 2015. [Online]. Available: http://web.cs.ucdavis.edu/
~rogaway/aez/aez.pdf

2. ——, “Robust authenticated-encryption: AEZ and the problem that it solves,” in
Advances in Cryptology - EUROCRYPT 2015, Sofia, Bulgaria, April 26-30, 2015,
pp. 15–44.

3. CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness. (2016, January) Cryptographic competitions. [Online]. Available:
http://competitions.cr.yp.to/index.html

4. P. Rogaway and T. Shrimpton, “A provable-security treatment of the key-wrap
problem,” in Advances in Cryptology - EUROCRYPT 2006, St. Petersburg, Russia,
May 28 - June 1, 2006, pp. 373–390.

5. C. Arnould, “Towards Developing ASIC and FPGA Architectures of High-
Throughput CAESAR Candidates,” Master’s thesis, ETH Zurich, March 2015.

6. E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, P. Yalla, J.-P. Kaps, and
K. Gaj, “CAESAR Hardware API,” Cryptology ePrint Archive, Report 2016/626,
2016, http://eprint.iacr.org/2016/626.

7. Cryptographic Engineering Research Group (CERG) at GMU. (2016, Jun.)
Addendum to the CAESAR Hardware API v1.0. [Online]. Available: https:
//cryptography.gmu.edu/athena/index.php?id=CAESAR

8. ARM. AMBA Specifications. [Online]. Available: http://www.arm.com/products/
system-ip/amba-specifications.php

9. T. Krovetz, “AEZ v4.1 reference code,” Sep 2015. [Online]. Available:
http://www.cs.ucdavis.edu/~rogaway/aez

10. ——, “Aez v4.1 aes-ni version,” Oct 2015. [Online]. Available: http://www.cs.
ucdavis.edu/~rogaway/aez

11. (2014, Jan) Caesar call for submissions, final. [Online]. Available: https:
//competitions.cr.yp.to/caesar-call.html

12. C. Hornig, “A standard for the transmission of ip datagrams over ethernet net-
works,” Internet Requests for Comments, RFC Editor, STD 41, April 1984.

13. K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brew-
ster, “ATHENa – automated tool for hardware evaluation: Toward fair and com-
prehensive benchmarking of cryptographic hardware using FPGAs,” in 20th Inter-
national Conference on Field Programmable Logic and Applications - FPL 2010.
IEEE, 2010, pp. 414–421.

14. Cryptographic Engineering Research Group (CERG) at GMU. (2015, Jul.) GMU
ATHENa Database of Results. [Online]. Available: https://cryptography.gmu.
edu/athenadb/fpga_auth_cipher/rankings_view

15. D. Bernstein and T. L. (editors). (2016, October) eBACS: ECRYPT Benchmarking
of Cryptographic Systems. [Online]. Available: https://bench.cr.yp.to

18

http://web.cs.ucdavis.edu/~rogaway/aez/aez.pdf
http://web.cs.ucdavis.edu/~rogaway/aez/aez.pdf
http://competitions.cr.yp.to/index.html
http://eprint.iacr.org/2016/626
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.cs.ucdavis.edu/~rogaway/aez
http://www.cs.ucdavis.edu/~rogaway/aez
http://www.cs.ucdavis.edu/~rogaway/aez
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://bench.cr.yp.to

	AEZ: Anything-but EaZy in Hardware

