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Abstract—Most widely used security protocols, Internet Pro-
tocol Security (IPSec), Secure Socket Layer (SSL), and Transport
Layer Security (TLS), provide several cryptographic services
which in turn require multiple dedicated cryptographic al-
gorithms. A single cryptographic primitive for all secret key
functions utilizing different mode of operations can overcome
this constraint. This paper investigates the possibility of using
AES and Keccak as the underlying primitives for high-speed
and resource constrained applications. Even though a plain
AES implementation is typically much smaller and has a better
throughput to area ratio than a plain Keccak, adding additional
cryptographic services changes the results dramatically. Our
multi-purpose Keccak outperforms our multi-purpose AES by a
factor of 4 for throughput over area on average. This underlines
the flexibility of the Keccak Sponge and Duplex functions. Our
multi-purpose Keccak achieves a throughput of 23.2 Gbps in AE-
mode (Keyak) on a Xilinx Virtex-7 and 28.7 Gbps on a Altera
Stratix-IV. In order to study this further we also implemented
two versions of a dedicated Keyak and dedicated AES-GCM.
Our dedicated Keyak implementation outperforms our dedicated
AES-GCM on average by a factor 6 in terms of throughput
over area reaching a throughput of 28.9 Gbps and 4.1 Gbps
respectively on a Xilinx Virtex-7.

I. INTRODUCTION AND MOTIVATION

IPSec [1], SSL [2] and TLS [3] provide the following
services: Integrity is provided through a Hash Function
which takes a variable-length input message M and produces
a fixed length output which is called hash H. The length of
the message is denoted by |M|. Authentication and integrity
can be provided by a Message Authentication Code (MAC).
It takes the same inputs as a hash function and additionally
a secret key K. The output of the MAC is an authentication
tag T'. Confidentiality, integrity, and authentication can simul-
taneously be provided by Authenticated Encryption (AE).
AE schemes have the same inputs as MACs and generate, in
addition to 7', the encrypted message called cipher text C.
AE schemes, that also support authentication of data that is
associated with the message AD, are called Authenticated
Encryption with Associated Data (AEAD) schemes. Some
cryptographic algorithms require an initialization vector IV as
an additional input. Pseudo Random Number Generators are
used by these protocols for providing secret keys and nonces.
PRNGs use a random seed S as input and generate a random
string R.

Several of these services could be provided by a single
secret key algorithm such as AES [4] through application of
several modes of operation. While AES is a natural choice
for an all-in-one implementation due to its popularity, Kec-
cak [5], specifically Keccak’s f-permutation, is also a very
interesting option. Keccak is the winner of the competition
for the next Secure Hash Algorithm (SHA-3). Its versatile
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TABLE I: AES / Rijndael* and Keccak Modes
(Rd. = Number of rounds)

Operation | Mode Block Key Rd. p Inputs Outputs
Hash* AES-Hash{256 N/A 14 M|, M H
o |[MAC CMAC 128 128 10 M|, M, K, IV |T
m |AEAD |GCM 128 128 10 M|, M, K, IV,|T, C
< AD|,AD
PRNG |Fortuna |128 N/A 14 S R
Hash Sponge 1600 N/A 24 1088[[M]|, M H
~% |IMAC Sponge  [1600 128 24 1088||M|, M, K, IV |T
S |AEAD  |Duplex 1600 128 12 1344||M|, M, K, IV,|T, C
o AD|,AD
PRNG  |Duplex 1600 N/A 12 1344|S R

f-permutation [6] allows it to operate in multiple modes to
support various cryptographic services needs. Furthermore,
the Keccak f-function is also the basis of two candidates of
the cryptographic Competition for Authenticated Encryption:
Security, Applicability, and Robustness (CAESAR) namely
Ketje and Keyak.

II. MODES OF OPERATION

AES: We chose AES-Hash [7] which has been proposed to
NIST as a mode of operation for hashing. It is a variant of
Davies-Meyer [8] and uses Rijndael with a block size of 256-
bit and a 256-bit key. The Cipher based Message Authenti-
cation Code (CMAC) [9] is a NIST recommended mode of
operation for authentication and is equivalent to OMACI, a
variation of One-Key CBC-MAC (OMAC). For AE schemes,
NIST recommends Galois/Counter Mode (GCM) [10]. For-
tuna [11] was developed as a cryptographically secure PRNG
mode.

Keccak: is a family of cryptographic hash functions which
maps a variable-length input to variable-length output using a
fixed length permutation called f-permutation. All the modes
we present in this paper for Keccak are based on Sponge
construction for Hash and MAC and Duplex construction for
PRNG and AEAD. We chose Keccak as our hashing mode. In
MAC mode, Key and IV are processed as message to generate
the initial state. Then the message is hashed to produce the
MAC. The AE mode, Keyak, produces a key stream after
processing Key and IV. The key stream is XORed with the
message to produce the cipher text C. This process is repeated
until the last block of the message. The output after processing
the last block is 7". In PRNG mode, a nonce is used as an initial
seed. It then produces pseudo random bits up to a maximum
number determined by the bit rate (r). Additional random bits
can be generated through repeated calls to the f-function with
an empty block as input. Table I shows the parameters for each
mode of AES and Keccak.
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III. DESIGN DECISIONS

We designed one high-speed (HS) and one low-area (LA)
architecture for each Keccak and AES. These two architec-
tures support all modes for Hash, MAC, AEAD, and PRNG.
Analyzing the results of these implementations led us to
additionally designing two dedicated implementations of each
Keyak and AES-GCM. The HS architectures use the native
datapath width of the respective algorithm, i.e. 1600 bits for
Keccak and 128 bits for AES. The datapath width of the LA
architecture for AES is 32 bits as this is the width of the
largest single operation: MixColumn. For Keccak we used a
datapath width of 64 bits which is the width of a word in
Keccak. All architectures have the secondary design goal of
high throughput to area ratio. We assume that all input data
must be a multiple of a byte. Padding of messages is performed
in hardware. Input data is assumed to be zero padded if not a
multiple of the I/O width. For more details about padding, we
refer to [5], and [12]. Keccak-r is chosen to be 1088-bit, which
is the recommended bit rate that would provide the same level
of security as SHA-256. To keep the design simple, the size of
key, IV and seed are fixed to 128 bits.We consider that 128-
bit key and IV provide adequate security margin. The interface
used is based on [13] and [14]. The data input (DI) and outputs
(D0) are designed to operate with FIFOs. The width of these
interfaces w is set to 16-bit and 128-bit for low-area and high-
speed architectures, respectively.

IV. IMPLEMENTATIONS OF AES

High-speed architecture: Our base design contains two AES-
128 encryption only cores that can support key sizes of 128-
and 256-bit. The two AES-128 cores also have the capability

to form a single Rijndael-256 core for the AES-Hash. All
operations are the same for AES-128 and Rijndael-256 with
the exception of ShiftRow. The top level datapath of multi-
AES is shown in Fig. 1. The non-shaded region represents the
shared path amongst different modes of operation. The shaded
region on the left is dedicated for CMAC which does not
support parallel processing. CMAC requires pre-computation
of SubKey1 from AES round. Then SubKey?2 is derived from
SubKeyl. The right hand side top shaded region represents
the resources required for AES-Hash and the bottom shaded
region for AES-GCM. As we are processing two blocks of
data at a time, two 128x16 Galois field multipliers are used
with Hkey1 calculated by doubling Hkey?2.

Low Area Architecture: The LA AES datapath has two dual-
port 32-bit wide RAMs with dedicated read and write ports are
used to store various inputs and state variables. These RAMs
are actually a combination of four 8-bit wide RAMs which
allows splitting of 32-bit words into four individual bytes.
This way of storing the state allows to perform the shift-row
operation by addressing. It takes four clock cycles to perform
one round of AES. In case of AES-Hash, it takes eight clock
cycles for one-round due to the 256-bit block size. The original
key (K), round key (K;,,q), and two subkeys used in AES-
CMAC are stored in an additional RAM. The multiplication in
AES-GCM is performed using a 128x2 multiplier and two 128-
bit registers. It takes 64 clock cycles to perform one 128x128
multiplication. The dedicated AES-GCM design is a reduced
version of multi-purpose core without additional hardware to
support other modes.

V. IMPLEMENTATIONS OF KECCAK

High-Speed Architecture: The design shown in Fig. 2 is
based on the single round iterative architecture from [15]. The
input data block is extended to 1344 bits in order to support the
duplex mode which was not available in our base architecture.
An XOR-unit is added to provide the encryption/decryption
capability and a multiplexer to select which part of the datapath
provides the output. The new byte selection unit (Byte Sel)
enables the selection of input data or encrypted data on a byte
basis. A DuplexPad signal is combined with the output from
the byte selection unit and injected into the state via an XOR.
At this point, SpongePad signal can be activated to provide
proper padding. It must be noted that the difficulties in adding
support for multiple modes of operation for Keccak are the
support for non-uniform block size coupled with the need for
an internal padding unit. These difficulties cause the controller
for the input loading module of Keccak to be more complex
than for AES, even though Keccak has a simpler datapath. Due
to the reduced round requirement of Keccak in Duplex mode
used in AEAD and PRNG operations, Keccak requires at least
128-bit I/O width in order to achieve its maximum theoretical
throughput.

Low-Area Architecture: Two dual-port distributed RAMs
with dedicated read and write ports are used to store the
state matrix along with all the other state variables. The state
variables C and D in the 6 step of f-function are computed
using a register and a couple of multiplexers. It takes 14 clock
cycles to compute the 5 state variables Cy to Cy and 6 clock
cycles to compute other 5 state variables Dy to Dy4. These 10
state variables are stored in both RAMs as they are required



for both even and odd state words. The 7 step is performed
by means of addressing the words. The 25 different cyclic
rotations in p step are performed using three pipelined 4x1
multiplexers and the y step using three registers. All together,
these three steps are computed in 39 clock cycles. To conserve
resources only 6-bits of each of the 24 round-constants in ¢
step are stored in memory as the remaining bits are all zeros.
No additional clock cycles are required for ¢ step. In total it
takes 58 clock cycles to perform one round operation. Through
scheduling the operations of two consecutive rounds, the total
clock cycles for 24 round is reduced to 1323 from the expected
1392 clock cycles. An additional single-port RAM is used to
store the Key, Seed and IV. Since the sizes of Key, Seed and IV
are fixed, padding for them requires minimal additional logic.
Hence it is included in the core. The dedicated Keyak design is
derived from the multi-purpose Keccak with minimal change.

VI. RESULTS

All of our results are after place-and-route and were
generated using Automated Tool for Hardware EvaluatioN
(ATHENa) [16] with Xilinx ISE 14.7 and Quartus II 13.1.
Throughput (TP) is calculated for long messages i.e the num-
ber of clock cycles required for initialization, preprocessing of
Key and IV are assumed to be zero. None of our designs utilize
embedded resources for ease of comparison. Using embedded
resources improves the performance of AES, however it would
degrade the performance of Keccak as shown in a previous
study [17]. Some results reported by others, especially the
ones from the industry, may include them as not all infor-
mation is provided. We implemented our designs on Xilinx
Virtex-5, Spartan-6, Virtex-6, Artix-7, and Virtex-7 and Altera
Cyclone-IV and Stratix-IV FPGAs. Detailed results for high-
speed implementations on Xilinx Virtex-7 and for low-area
implementations on Xilinx Artix-7 are shown in Table II. Due
to space constraints, results for other FPGAs are not shown in
detail. All performance comparisons are made with respect to
TP/Area.

Figure 3 shows the performance of our multi-Keccak
implementations relative to the multi-AES implementations for
all modes of operation on all devices. In almost every case,
the performance of multi-Keccak is much better, up to 14
times, than of multi-AES. In terms of throughput, this is not
surprising as the width of the Keccak datapath in high-speed
designs is 12.5 times wider than AES and 2 times for low-area
designs while the number of rounds is similar. However, this
increase in datapath width does not come with an increase
in area, leading to much better TP/Area results. This is due
to the fact that AES modes of operation have vastly different
underlying characteristics. As a result, resource sharing is not
possible. On the other hand, the primary difference between
Keccak modes is how the input blocks are formatted. Hence,
Keccak requires minimal additional resources. In case of low-
area designs the performance of Keccak in AEAD mode stands
out. The reason is the number of clock cycles required for the
AES-GCM multiplier.

Our dedicated implementations of Keyak outperform our
AES-GCM implementations in a similar way as multi-Keccak
outperforms multi-AES (Fig. 4). For low-area implementations
the relative performance of Keyak is higher than multi-Keccak
in AEAD mode. However, for high-speed designs the opposite

TABLE II: Results of AES and Keccak Implementations

Mode Design Area | Freq. TP | TP/Area
(Slices) | (MHz) | (Gbps) (Mbps/
Slices)

[ High-Speed Designs on Xilinx Virtex-7 FPGA |
Hash Multi-AES 3061 | 188.18 3.212 1.049
Multi-Keccak 2495 | 206.70 | 9.370 3.756
MAC Multi-AES 3061 | 188.18 | 2.190 0.715
Multi-Keccak 2495 | 206.70 | 9.370 3.756
AEAD Multi-AES 3061 | 188.18 | 4.380 1.431
Multi-Keccak 2495 | 206.70 | 23.150 9.279
PRNG AES-PRNG 3061 | 188.18 | 3.212 1.049
Multi-Keccak 2495 | 206.70 | 23.150 9.279
Dedicated AES-GCM 1455 | 35298 | 4.107 2.823
AEAD Keyak 2444 | 258.40 | 28.941 11.841

Low-Area Designs on Xilinx Artix-7 FPGA

Hash M}llti-AES 629 | 8283 | 0.166 0.263
Multi-Keccak 264 | 15223 | 0.125 0.474
MAC M_ulti-AES 629 | 82.83 | 0.189 0.301
Multi-Keccak 264 | 152.23 | 0.119 0.451
AEAD Mplti—AES 629 | 8283 | 0.074 0.117
Multi-Keccak 264 | 152.23 0.274 1.037
PRNG M}llti—AES 629 | 82.83 | 0.379 0.602
Multi-Keccak 264 | 152.23 | 0.280 1.060
Dedicated AES-GCM 548 | 71.09 | 0.630 0.115
AEAD Keyak 260 | 177.87 0.136 1.231

TABLE III: Comparison of our designs with other
implementations on Xilinx Virtex-5
(TW = This Work)

Mode Design Area | Freq. TP | TP/Area
(Slices) | (MHz) | (Gbps) | (Mbps/

Slices)

MulG-AES [TW] || 287120329 3470] 1.208

Hash | Multi-Keccak [TW] || 2805 | 163.92| 7.431| 2.649
Keccak [15] || 1395 | 281.84 | 12.777 9.16

- MulG-AES [TW] || 2871 | 20329 | 2366 0824
8| MAC |Multi-Keccak [TW] || 2805 | 163.92| 7.431| 2.649
% GMAC [18]|| 9405 |120.17 | 15382 |  1.636
) AES-GCM [TW] || 108928353 | 3299 3.030
£ , AES-GCM [19] 678 | 335.00| 2250| 3319
Dedicated|  Agq.coM [20) 490 | 274.00 | 1.525| 3.112
AEAD | Graest/AES [21]]|  3102|233.00| 3.848| 1.240
Keyak [TW] || 2357 | 243.96 | 27.324| 11.593

Mult-AES [TW] 78| 13123 | 0262] 0549

Hae | Multi-Keceak [TW] 318 |257.00| 0.211|  0.665

5 ‘ Keccak [22] 275|251.25| 0.118| 0.430
= Keccak [23] 393 | 159.0| 0.864| 2.198
% AES-GCM [TW] 351 [130.87] 0.116| 0331
3 | Dedicated| ~ AES-GCM [19] 247(393.00| 0230| 0931
AEAD AES-CCM [20] 214 (27200 0363| 1.696
Keyak [TW] 259(281.29| 0506| 1.954

is true. That is due to the fact that multi-AES employs a dual-
core AES while AES-GCM has only a single AES core.

Comparison with results from literature, which are on
Xilinx Virtex-5, are reported in Table III. As there are no
reported results of a design which can be operated in all the
four modes of operations, we compare our results with designs
that utilize block ciphers operating in a specific mode. Our
high-speed multi-Keccak has a reduced performance in terms
of TP/Area compared to the dedicated hash core in [15]. A
huge contribution to this is the increase in area due to the
additional modes of operation. The slower frequency is due to
the additional padding unit used in our designs. For MAC, our
high-speed multi-AES still trails behind the design for GMAC
[18] while multi-Keccak can compete against the previous
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purpose Keccak over corresponding AES cores for AEAD

work relatively well. The performance of our dedicated high-
speed AES-GCM closely matches those of single message
AES-based AEAD designs in literature in terms of TP/Area.
This validates our claim that adding additional modes to AES-
GCM significant impacts its performance. Keyak, on the other
hand, outperforms them by as much as a factor of 9. This is
largely due to the larger block size with similar number of
rounds as compared to other algorithms. When comparing our
low-area designs in Hash mode, our Multi-Keccak performs
better than [22] but not against [23]. We believe that the
reduction of performance is due to support for other modes. In
case of dedicated modes, our Keyak performs better that [19],
[20].Unfortunately, our dedicated AES-GCM does not perform
as well as [19] and [20]. However, their implementation details
are not known.

VII. CONCLUSION

Overall, our Multi-Keccak design has a much better
TP/Area than our Multi-AES design by about a factor of 4
across all functions and FPGAs as can be seen in Fig. 3. The
reason is that even though the AES core can be implemented
much more compactly than Keccak f-permutation for high
speed design, the addition of modes is much more complex
for AES which can be seen in Figs. 1, 2. Also, the throughput
of Keccak exceeds AES’s on most FPGAs. The maximum
throughput for Multi-Keccak AEAD is 23.2 Gbps on Virtex-
7 and 28.7 Gbps on Stratix-IV. Multi-AES in GCM mode
achieves 4.4 Gbps and 5.6 Gbps on the same devices respec-
tively. In case of dedicated cores, the maximum throughput for
Keyak and AES-GCM are 28.9 Gbps and 4.1 Gbps on Virtex-
7 respectively. All in all, this clearly shows that Keccak is
more suitable than AES as a basis for multi-service functions.
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