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Below we provide our proposal for a standard hardware interface of a secure hash 
algorithm, SHA. Our interface supports hash function SHA-1 and the family of hash 
functions SHA-2 described in [1]. The same interface will most likely apply to all (or at 
least majority) of hash algorithms competing in the contest for the new SHA-3 standard. 
 
1. Input/output ports 
 
In Fig. 1, we illustrate the names, directions, and widths of input and output ports of the 
proposed SHA core. 
 

 
 

Fig. 1: Input/output interface of a SHA core 
 
Table 1 describes functions of all SHA ports. The constant parameter w represents the 
natural data word width for a given function. In particular, w=32 for SHA-1, SHA-224, 
and SHA-256; w=64 for SHA-384 and SHA-512. 

 
Table 1: Functionality of Input/Output Ports 

 
Global Control Signals 
clk	
   in Global clock. 
rst	
   in Global reset, active HIGH. Minimum duration equal to 

one clock cycle. After the positive reset pulse, the SHA 
core becomes ready to hash a new message. In case the 
reset appears during hashing of a message, the hashing 
is abandoned, no output is generated, and the core 
becomes ready to accept a new message. 
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Input Data Interface 
din[w-1:0] in A w-bit word of input data. 
src_ready	
   in A control signal indicating that the source of input is 

ready to be read from. Active LOW. 
src_read	
   out A control signal used to read data from the source of 

data. Data from the din input is assumed to be stored in 
the SHA core at the next rising edge of the clock. Active 
HIGH. 

Output Data Interface 
dout[w-1:0] out A w-bit word of output data (i.e., a word of a hash 

value). 
dst_ready	
   in A control signal indicating that the destination of output 

is ready to be written to. Active LOW. 
dst_write	
   out A control signal used to write data to the destination of 

data. Data from the dout	
  output is assumed to be 
accepted by the destination circuit at the next rising 
edge of the clock. Active HIGH. 

 
 
 
2. Typical scenario 
 
In a typical scenario, the SHA core is assumed to be surrounded by two standard FIFO 
modules: Input FIFO and Output FIFO, as shown in Fig. 2.  
 

 
 

Fig. 2: A typical configuration of a SHA core connected to two surrounding FIFOs. 
The Input FIFO serves as a source of input data, and the Output FIFO as a 

destination for output data. 
 

 
Each FIFO module generates signals empty and full, which indicate that the FIFO is 
empty and/or full, respectively. Each FIFO accepts control signals write and read, 
indicating that the FIFO is being written to and read from, respectively. 
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After a global reset (active value of the signal rst) both FIFOs are assumed to be empty. 
As soon as data is written to Input FIFO, the control output of this FIFO, fifoin_empty, 
becomes low, which is an active value of the SHA port src_ready. This is a signal for the 
SHA core to activate src_read and thus fifoin_read. The fifoin_read signal is active in 
every clock cycle in which SHA core is ready to accept a new word of data and the 
fifoin_empty signal is inactive. 
 
After processing the entire message, SHA core writes a hash value to Output FIFO one 
word per clock cycle. In order to do that, SHA core activates an output port dst_write 
connected to fifoout_write. This output remains active until either the hash value is 
completely written to Output FIFO, or this FIFO is temporarily full. In the latter case, the 
transfer of output data to the Output FIFO will resume as soon as fifoout_full is low.  
 
The aforementioned assumptions about the use of FIFOs as surrounding modules are very 
natural and easy to meet.  
 
If a SHA core implemented on an FPGA communicates with an outside world using PCI, 
PCI-X, or PCIe interface, the implementations of these interfaces most likely already 
include Input and Output FIFOs that can be directly connected to the SHA core. 
 
If a SHA core communicates with another core implemented on the same FPGA, then 
FIFOs are often used on the boundary between the two cores in order to accommodate for 
any differences between the rate of generating data by one core and the rate of accepting 
data by another core. 
 
In the described above configuration, SHA core is an active module, while a surrounding 
logic (FIFOs) is passive. Passive logic is much easier to implement, and in our case is 
composed of standard logic components, FIFOs, available in any major library of IP 
cores. Performance and area overhead associated with the use of FIFOs can be quite 
easily controlled, depending on available resources. In particular, the FIFOs can have 
arbitrary depth, including the depth of one, in which case, they may be implemented 
using registers only plus a simple control logic. 
 
At the same time, it should be clearly understood that the input and output FIFOs are not 
a part of the SHA core, but they are rather a part of the surrounding circuit. In particular, 
during verification of the SHA core using functional, post-synthesis, and timing 
simulation, these FIFOs can be implemented as a part of a testbench. 
 
Additionally, the inputs and outputs of our proposed SHA core interface do not need to 
be necessarily generated/consumed by FIFOs. Any circuit that can support control signals 
src_ready and src_read can be used as a source of data. Any circuit that can support 
control signals dst_ready and dst_write can be used as a destination for data. 
 
The main advantage of using FIFOs is a capability of storing intermediate data awaiting 
processing. For example, a simple handshaking protocol between the source circuit and 
the SHA core may tell the source circuit to stop sending data, but it does not support 
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buffering data that is generated too fast for future processing. This is especially important 
with sources generating data in a bursting fashion. 
 
3. Format of input 
 

 
 
Fig. 3: Format of input data for two different operation scenarios: a) with message 
bitlength known in advance, and b) with message bitlength unknown in advance. 

Notation: zero-word = sequence of w zeros, ------- =  unused (do not care) bits of the 
last message word. 

 
The exact format of input to the SHA core is shown in Fig. 3. 
 
Two scenarios of operation are supported. In the first scenario, the message bitlength is 
known in advance and is smaller than 2w. In this scenario, shown in Fig. 3a, the first word 
of input represents message length expressed in bits. This word is followed by all words 
of the message, including the last word, which can include less than w bits of the 
message. This last word is followed by the zero_word, which indicates the end of the 
input. 
 
The second format, shown in Fig. 3b, is used when either message length is not known in 
advance, or it is greater than 2w. In this case, the message is processed in segments of data 
denoted as seg_0, seg_1, …, seg_n-­‐1. For the ease of processing data by the hash core, 
the size of the segments, from seg_0 to seg_n-­‐2 is required to be always an integer 
multiple of the word size w. The last segment can be of arbitrary length < 2w. This 
segment is processed in the same way as the entire message in scenario a). This way there 
is no need for any additional signal to distinguish between these two scenarios. Scenario 
a) is a special case of scenario b). 
Please note that scenario b) is very similar to the way data is assumed to be processed in a 
typical software API for hash functions, such as [2]. The Update function of the software 
API corresponds to processing segments from seg_0 to seg_n-­‐2. The function Final  
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corresponds to the processing of the last segment of data, seg_n-­‐1. The operations of the 
function Init can be either executed when the size of the first block is read, or the 
zero_block of the previous message is processed. 
 
In case the SHA core does not support padding, padding must be done in software, and 
the meaning of the msg_bit_length in Fig. 3a changes to the message bit length after 
padding. For majority of hash functions known to the authors, this message bit length will 
be a multiple of the word size, which means that the last word of the message will not 
contain any unused bits, shown as “do not cares” (-------) in Fig. 3a. Similarly, the sum of 
the segment bit lengths in Fig. 3b, seg_0_bitlen + seg_1_bitlen +…+ seg_n-­‐1_bitlen will 
have a meaning of the message bit length after padding, and, for the same functions, the 
last word of the last segment of the message will not contain any unused bits. 
 
Format 3a is a special case of Format 3b. There is no way to distinguish between the two 
cases, other than by looking at the first word after the end of seg_0. If this word is zero, 
then seg_0 = entire message, otherwise, there is at least one more data segment. 
Preparing messages in the format shown in Fig. 3b is very simple. The number of clock 
cycles necessary to process a message smaller than 2w bits is the same, as in the case of 
an alternative protocol using two first words of the input to denote the length of the 
message. For longer messages, any overhead is negligible.  
Please note that a single protocol shown in Fig. 3b covers several substantially different 
scenarios: 

a. message length known or unknown in advance 

b. padding in software or padding in hardware 

c. message length < 2w or message length >= 2w. 

 
4. FIFO operation 
 
An example of how a FIFO operates is shown below. The assumption is made that when 
the FIFO is empty, the output of the FIFO contains the value “do not care” denoted by 
“–“. In the actual implementation, the output of FIFO will contain a specific value, but 
this value should be ignored by the circuit communicating with the FIFO. 
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Fig. 4: An example of operation of FIFO. 
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