

George Mason University
1

George Mason University

Hardware Interface of a Secure Hash Algorithm (SHA)

Functional Specification
v. 1.4 January 29, 2010 by CERG at George Mason University

Below we provide our proposal for a standard hardware interface of a secure hash
algorithm, SHA. Our interface supports hash function SHA-1 and the family of hash
functions SHA-2 described in [1]. The same interface will most likely apply to all (or at
least majority) of hash algorithms competing in the contest for the new SHA-3 standard.

1. Input/output ports

In Fig. 1, we illustrate the names, directions, and widths of input and output ports of the
proposed SHA core.

Fig. 1: Input/output interface of a SHA core

Table 1 describes functions of all SHA ports. The constant parameter w represents the
natural data word width for a given function. In particular, w=32 for SHA-1, SHA-224,
and SHA-256; w=64 for SHA-384 and SHA-512.

Table 1: Functionality of Input/Output Ports

Global Control Signals
clk	
 in Global clock.
rst	
 in Global reset, active HIGH. Minimum duration equal to

one clock cycle. After the positive reset pulse, the SHA
core becomes ready to hash a new message. In case the
reset appears during hashing of a message, the hashing
is abandoned, no output is generated, and the core
becomes ready to accept a new message.

George Mason University
2

Input Data Interface
din[w-1:0] in A w-bit word of input data.
src_ready	
 in A control signal indicating that the source of input is

ready to be read from. Active LOW.
src_read	
 out A control signal used to read data from the source of

data. Data from the din input is assumed to be stored in
the SHA core at the next rising edge of the clock. Active
HIGH.

Output Data Interface
dout[w-1:0] out A w-bit word of output data (i.e., a word of a hash

value).
dst_ready	
 in A control signal indicating that the destination of output

is ready to be written to. Active LOW.
dst_write	
 out A control signal used to write data to the destination of

data. Data from the dout	
 output is assumed to be
accepted by the destination circuit at the next rising
edge of the clock. Active HIGH.

2. Typical scenario

In a typical scenario, the SHA core is assumed to be surrounded by two standard FIFO
modules: Input FIFO and Output FIFO, as shown in Fig. 2.

Fig. 2: A typical configuration of a SHA core connected to two surrounding FIFOs.
The Input FIFO serves as a source of input data, and the Output FIFO as a

destination for output data.

Each FIFO module generates signals empty and full, which indicate that the FIFO is
empty and/or full, respectively. Each FIFO accepts control signals write and read,
indicating that the FIFO is being written to and read from, respectively.

George Mason University
3

After a global reset (active value of the signal rst) both FIFOs are assumed to be empty.
As soon as data is written to Input FIFO, the control output of this FIFO, fifoin_empty,
becomes low, which is an active value of the SHA port src_ready. This is a signal for the
SHA core to activate src_read and thus fifoin_read. The fifoin_read signal is active in
every clock cycle in which SHA core is ready to accept a new word of data and the
fifoin_empty signal is inactive.

After processing the entire message, SHA core writes a hash value to Output FIFO one
word per clock cycle. In order to do that, SHA core activates an output port dst_write
connected to fifoout_write. This output remains active until either the hash value is
completely written to Output FIFO, or this FIFO is temporarily full. In the latter case, the
transfer of output data to the Output FIFO will resume as soon as fifoout_full is low.

The aforementioned assumptions about the use of FIFOs as surrounding modules are very
natural and easy to meet.

If a SHA core implemented on an FPGA communicates with an outside world using PCI,
PCI-X, or PCIe interface, the implementations of these interfaces most likely already
include Input and Output FIFOs that can be directly connected to the SHA core.

If a SHA core communicates with another core implemented on the same FPGA, then
FIFOs are often used on the boundary between the two cores in order to accommodate for
any differences between the rate of generating data by one core and the rate of accepting
data by another core.

In the described above configuration, SHA core is an active module, while a surrounding
logic (FIFOs) is passive. Passive logic is much easier to implement, and in our case is
composed of standard logic components, FIFOs, available in any major library of IP
cores. Performance and area overhead associated with the use of FIFOs can be quite
easily controlled, depending on available resources. In particular, the FIFOs can have
arbitrary depth, including the depth of one, in which case, they may be implemented
using registers only plus a simple control logic.

At the same time, it should be clearly understood that the input and output FIFOs are not
a part of the SHA core, but they are rather a part of the surrounding circuit. In particular,
during verification of the SHA core using functional, post-synthesis, and timing
simulation, these FIFOs can be implemented as a part of a testbench.

Additionally, the inputs and outputs of our proposed SHA core interface do not need to
be necessarily generated/consumed by FIFOs. Any circuit that can support control signals
src_ready and src_read can be used as a source of data. Any circuit that can support
control signals dst_ready and dst_write can be used as a destination for data.

The main advantage of using FIFOs is a capability of storing intermediate data awaiting
processing. For example, a simple handshaking protocol between the source circuit and
the SHA core may tell the source circuit to stop sending data, but it does not support

George Mason University
4

buffering data that is generated too fast for future processing. This is especially important
with sources generating data in a bursting fashion.

3. Format of input

Fig. 3: Format of input data for two different operation scenarios: a) with message
bitlength known in advance, and b) with message bitlength unknown in advance.

Notation: zero-word = sequence of w zeros, ------- = unused (do not care) bits of the
last message word.

The exact format of input to the SHA core is shown in Fig. 3.

Two scenarios of operation are supported. In the first scenario, the message bitlength is
known in advance and is smaller than 2w. In this scenario, shown in Fig. 3a, the first word
of input represents message length expressed in bits. This word is followed by all words
of the message, including the last word, which can include less than w bits of the
message. This last word is followed by the zero_word, which indicates the end of the
input.

The second format, shown in Fig. 3b, is used when either message length is not known in
advance, or it is greater than 2w. In this case, the message is processed in segments of data
denoted as seg_0, seg_1, …, seg_n-­‐1. For the ease of processing data by the hash core,
the size of the segments, from seg_0 to seg_n-­‐2 is required to be always an integer
multiple of the word size w. The last segment can be of arbitrary length < 2w. This
segment is processed in the same way as the entire message in scenario a). This way there
is no need for any additional signal to distinguish between these two scenarios. Scenario
a) is a special case of scenario b).
Please note that scenario b) is very similar to the way data is assumed to be processed in a
typical software API for hash functions, such as [2]. The Update function of the software
API corresponds to processing segments from seg_0 to seg_n-­‐2. The function Final

George Mason University
5

corresponds to the processing of the last segment of data, seg_n-­‐1. The operations of the
function Init can be either executed when the size of the first block is read, or the
zero_block of the previous message is processed.

In case the SHA core does not support padding, padding must be done in software, and
the meaning of the msg_bit_length in Fig. 3a changes to the message bit length after
padding. For majority of hash functions known to the authors, this message bit length will
be a multiple of the word size, which means that the last word of the message will not
contain any unused bits, shown as “do not cares” (-------) in Fig. 3a. Similarly, the sum of
the segment bit lengths in Fig. 3b, seg_0_bitlen + seg_1_bitlen +…+ seg_n-­‐1_bitlen will
have a meaning of the message bit length after padding, and, for the same functions, the
last word of the last segment of the message will not contain any unused bits.

Format 3a is a special case of Format 3b. There is no way to distinguish between the two
cases, other than by looking at the first word after the end of seg_0. If this word is zero,
then seg_0 = entire message, otherwise, there is at least one more data segment.
Preparing messages in the format shown in Fig. 3b is very simple. The number of clock
cycles necessary to process a message smaller than 2w bits is the same, as in the case of
an alternative protocol using two first words of the input to denote the length of the
message. For longer messages, any overhead is negligible.
Please note that a single protocol shown in Fig. 3b covers several substantially different
scenarios:

a. message length known or unknown in advance

b. padding in software or padding in hardware

c. message length < 2w or message length >= 2w.

4. FIFO operation

An example of how a FIFO operates is shown below. The assumption is made that when
the FIFO is empty, the output of the FIFO contains the value “do not care” denoted by
“–“. In the actual implementation, the output of FIFO will contain a specific value, but
this value should be ignored by the circuit communicating with the FIFO.

George Mason University
6

Fig. 4: An example of operation of FIFO.

Literature:
[1] Federal Information Processing Standard, FIPS 180-3, Secure Hash Standard (SHS),

National Institute of Standards and Technology, October 2008, available at
 http:// csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
[2] ANSI C Cryptographic API Profile for SHA-3 Candidate Algorithm Submissions,
 available at http://csrc.nist.gov/groups/ST/hash/sha-3/Submission_Reqs/crypto_API.html

Contact information:

Kris Gaj (general questions and questions regarding the specification)
Cryptographic Engineering Electrical and Computer Engineering
Research Group George Mason University
email: kgaj@gmu.edu 4400 University Drive
phone: (703) 993 1575 Fairfax, VA 22030
fax: (703) 993 1601 U.S.A.

