ATHENa v. 0.3.1 Tutorial
December 10, 2009

Part 1 — Tools Installation

ATHENa 0.3 requires three main types of programs to support the execution of its scripts: a Perl
interpreter, Synthesis Tool(s), and Implementation Tool(s). Generally, basic versions of synthesis and
implementation tools are provided freely by FPGA vendors. However, these free tools will not be able to
perform synthesis and implementation targeting all FPGA devices available on the market. In order to
generate results for a full range of FPGA devices, you will need to purchase appropriate licenses.

As of version 0.3.1, only Windows versions of Xilinx and Altera tools are supported. Linux is
currently not supported.

The free versions of tools can be downloaded from the following web sites:

Perl

Perl Interpreter - http://www.activestate.com/downloads/

Synthesis and Implementation Toolsets
Xilinx

ISE - http://www.xilinx.com/tools/webpack.htm

Altera

Quartus - https://www.altera.com/support/software/download/altera design/quartus we/dnl-
guartus _we.jsp

Synthesis and Implementation tools do not support all operating systems. For a list of supported
operating systems see :

Xilinx - http://www.xilinx.com/ise/ossupport/index.htm

Altera - http://www.altera.com/literature/po/ss gquartussevswe.pdf

Once the tools are installed, you will need to run ATHENa_setup.bat to set the version of tools
for Xilinx and/or Altera. Once finished, you must save and exit before any changes become effective.

This process generates ATHENa.bat in your root directory, and tool_config.txt in the config folder
located inside of your root directory. The root directory is the directory called ATHENa, where you
unpacked the ATHENa toolset. ATHENa.bat is a batch file that you use for starting ATHENa operation.
tool_config.txt is a log file containing your tool settings.

The generated script should be used for all future runs of ATHENa with your preselected
versions of tool. If changing a version of Xilinx and/or Altera tools is required, simply rerun the setup
script. Sometimes, the setup script may not be able to detect your installed tools. You may need to
specify the path to the root directory of your installed tools by choosing: 2. Add another version to the
list, when you run the script.

Part 2 — General Project Setup and Reports

In order to prepare your code for evaluation using ATHENa, edit the file design.config.txt
located in the config subdirectory of your root directory.

Inside the file, specify the desired workspace directory using the variable WORK_DIR. This is a
directory used as a root for all intermediate and result file directories. Then, you need to specify the
location of the source folder using the variable SOURCE_DIR. This is a folder containing your VHDL
source files. Specify the remaining parameters according to the meaning of options as explained in
Appendix A.

Once the preparation of the configuration file is completed, double click on ATHENa.bat located
in your root folder to start. The results generated by the scripts will be shown in your command line
window, as well as stored in text files located in the directory WORK_DIR under the following subfolder
S{application}\${date}_S${projectname}_${ instance_no}.

S{application} is the type of application as specified in design.config.txt. S{date} is the date at
which the project is run. S{projectname} is the name of the project as specified in design.config.txt.
S{instance_no} is an instance number of the project. An instance number is used in order to distinguish
folders created on different time during the same day.

In each run of ATHENa, four report files are generated. These are option, resource utilization,
timing, and execution time reports. The option report contains information about the specific options of
tools used in a given run (default tool options are not listed). The resource utilization report contains
information about the use of FPGA resources. Timing report contains timing related results. Execution
time report contains the time taken by each tool.

Part 3 — Application Setup

As of version 0.3.1, there are three supported applications :
single_run, placement_search and exhaustive_search.

3.1 single_run

single_run is the most basic ATHENa’s application. It performs a single run through synthesis
and implementation for all target FPGA devices specified in design.config.txt. Options of synthesis and
implementation used for all these target devices are provided in the file:
options.<OPTIONS>_<OPTIMIZATION_TARGET>.txt
located in the subdirectory config of the root directory.
OPTIONS and OPTIMIZATION TARGET are variables defined in design.config.txt.
OPTIONS = default or user. OPTIMIZATION_TARGET = speed, area, or balanced.

See Appendix D for a list of options that can be specified in the files
options.<OPTIONS>_<OPTIMIZATION_TARGET>.txt

3.2 placement_search

placement_search is an application that allows running implementation automatically for
multiple values of an option that determines a starting point of placement within a given FPGA device.
These options include: Cost Table for Xilinx and Seed for Altera.

If

APPLICATION = placement_search
is specified in the design.config.txt, then the tool will look into the file placement_search.txt located in
the config subfolder of the root directory. User can specify the range of the given option values using
the following format:

<number>; or <start_number>: <step> : <end_number>;

The first format allows specifying a single value of an option. The second format specifies a sequence of
values starting from start_number, and ending with end_number, with the value incremented by step in
each subsequent run.
The specification of a value or a range has to be terminated by a semi-colon. A user can combine
multiple specifications together, separated by semicolons. For instance,

XILINX_COST_TABLE_VALUES = 6; 13:6:30; 55;
means the values of the cost table equal to 6, 55 and the range from 13 to 30 with the step of 6. Thus,
the implementation will be repeated for the following values of the cost table: 6, 13, 19, 25, and 55.

See Appendix E for a full list of variables of placement_search.txt.

3.3 exhaustive_search

exhaustive_search extends placement_search to allow a user to specify a range of option values
for several types of options (beyond options that can be specified in placement_search).

In general, exhaustive_search is used to find optimum synthesis and implementation options
for a given source code, target device, tools, tool versions, and optimization target (speed, area, or
balanced).

The description of the exhaustive search strategy is given in the file:
exhaustive.<strategy_name>.txt, where the string <strategy _name> can be chosen arbitrarily.

For each option, several possible values used in the exhaustive search are specified. All options
are grouped into Level 1 options and Level 2 options. Level 1 options are investigated first in order to
determine a number of best combinations given by the variable BEST_LEVEL 1 OPTION_SETS. For each
set of options selected as best at Level 1, an exhaustive search is performed for all options at Level 2.

To select which strategy to use, simply use the strategy_name as a parameter to
EXHAUSTIVE_SEARCH_STRATEGY option.

See Appendix F for a list of options of exhaustive.<strategy_name>.txt.

Part 4 — Example Run

We have included example projects in our ATHENa package. These files are located inside of the
folder examples of the root directory. In order to perform a test run, proceed to config/design.config.txt
and make sure that this file contains the lines as shown in our basic and advanced examples.
Alternatively, you can overwrite design.config.txt by the provided template inside the example
directories and modify WORK _DIR and SOURCE_DIR path to reflect your work directory and source
directory, respectively. Once completed, you can navigate to package folder and click on ATHENa.bat to
start running the project.

Note: replace %RO0OT% with the full path to ATHENa’s root folder.

Basic example: Multiplier

WORK_DIR = %ROO0T%\workspace
SOURCE_DIR = %RO0T%\examples\mult
SOURCE_LIST_FILE = source_list.txt
PROJECT_NAME = multiplier
TOP_LEVEL_ENTITY = main
TOP_LEVEL_ARCH = main

CLOCK_NET = clk

OPTIMIZATION_TARGET = speed
OPTIONS = default

APPLICATION = single_run
FPGA_VENDOR = Xilinx

FPGA_FAMILY = Spartan3
FPGA_DEVICES = best_match
SYN_CONSTRAINT_FILE = default
IMP_CONSTRAINT_FILE = default
REQ_SYN_FREQ = default
REQ_IMP_FREQ = default
MAX_SLICE_UTILIZATION = 0.8
MAX_BRAM_UTILIZATION =1
MAX_DSP_UTILIZATION = 1
MAX_MUL_UTILIZATION = 1
MAX_PIN_UTILIZATION = 0.9

END FAMILY

END VENDOR

Advanced example : SHA2-256

WORK_DIR = %ROOT%\workspace
SOURCE_DIR = %RO0T%\examples\sha256
SOURCE_LIST_FILE = source_list.txt
PROJECT_NAME = sha256
TOP_LEVEL_ENTITY = sha256
TOP_LEVEL_ARCH = bl_arch

CLOCK_NET = clk

LATENCY = TCLK*65
THROUGHPUT = 512/(TCLK*65)

OPTIMIZATION_TARGET = speed
OPTIONS = default

APPLICATION = single_run
FPGA_VENDOR = xilinx

FPGA_FAMILY = spartan3
FPGA_DEVICES = best_match
SYN_CONSTRAINT_FILE = default
IMP_CONSTRAINT_FILE = default
REQ_SYN_FREQ = default
REQ_IMP_FREQ = default
MAX_SLICE_UTILIZATION = 0.8
MAX_BRAM_UTILIZATION = 1
MAX_DSP_UTILIZATION = 1
MAX_MUL_UTILIZATION = 1
MAX_PIN_UTILIZATION = 0.9
END FAMILY

END VENDOR

FPGA_VENDOR = altera
FPGA_FAMILY = Cyclone
FPGA_DEVICES = all
REQ_IMP_FREQ = default
END FAMILY

END VENDOR

Part 5 — Basic ATHENa Project Flow

Below is a flow that a user might use to create an ATHENa project using design.config.txt file. All options
specified in the given below flow are required. The parameters listed here are the absolute minimum
options the tool requires to operate.

Basic Options :

WORK DIR
SOURCE DIR
SOURCE FILES
PROJECT NAME
TOP_LEVEL ENTITY
TOP_LEVEL_ARCH
CLOCK_NET

Y

Basic Optimization Options :

OPTIMIZATION_TARGET
OPTIONS

Modify Application Option: Modify

|4-exhaustive _search placement_search—»|

APPLICATION placement search.txt

exhaustive<strategy name>.txt|

single _run

FPGA Vendor Selection:

FPGA_VENDOR

Y

FPGA Family Selection :

FPGA_FAMILY

FPCGA Device Selection :

FPGA_DEVICES

Part 6 — Workspace

Workspace is the place where ATHENa creates an instance of your project. An instance of your
project is created under the path described in Part 2:

Sworkspace\Sapplication\${date}_S${projectname}_${instance_no}

An ATHENa benchmarking project may contain many runs for each device. Hence, to view original
information as created by vendor’s tool before ATHENa processes this information, the user needs to
navigate to the following path of the project folder:

S{vendor}\${family}\${device}\${run_no}

S{vendor}, S{family} and S{device} are the name of the vendor, family and device used in a given run,
respectively. S{run_no} is the run number, starting from 1. This folder numbering is used to distinguish
between subsequent runs using different options.

Part 7 — Constraint File

As of version 0.3, constraint file is supported for Xilinx only. The file must be located inside of
your source folder. The user can specify the name of the constraint file in the design.config.txt under
SYN_CONSTRAINT_FILE and IMP_CONSTRAINT_FILE for synthesis and implementation, respectively.

Part 8 — Project Termination and Workspace Clearing

In the case that user accidentally starts an ATHENa project, user can stop the run by pressing
CTRL+C in the console window. Please note that a folder corresponding to the task that the user
accidentally started is created inside of the specified workspace. To clean up the undesired directories,
the user can either delete them manually or by running the clean_workspace.bat script located inside
your root directory. Please be aware that clean_workspace.bat file will also remove directories
corresponding to any uncompleted projects and projects that do not produce any results. Hence, be
careful when you are running the script as you may accidentally delete a run that you would like to use
as a source for debugging.

Appendix A : “design.config.txt” Options

Option Explanation
WORK_DIR Directory of your workspace.
SOURCE_DIR Directory of your source files for the project.

SOURCE_LIST_FILE

Contains the list of files to be compiled starting from the lowest level to the
highest level of file hierarchy. Each file name should be separated by new line.

TESTBENCH_DIR

<currently unsupported> To be used for an automated verification of the
circuit functionality in the future.

TESTBENCH_FILES

<currently unsupported> To be used for an automated verification of the
circuit functionality in the future.

PROJECT_NAME

Project’s name. The name of the project is directly associated with the
generated project name in your specified workspace. For Altera, project’s
name must be the same as your top level entity’s name.

TOP_LEVEL_ENTITY

Name of top level entity.

TOP_LEVEL_ARCH

Name of the architecture of your top level entity.

CLOCK_NET Name of the global clock in your design.

LATENCY The equation for calculating circuit’s latency. This should be in terms of TCLK,
where TCLK is the minimum clock period of the circuit.

THROUGHPUT The equation for calculating circuit’s throughput. This should be in terms of

TCLK, where TCLK is the minimum clock period of the circuit.

OPTIMIZATION_TARGET

Synthesis and implementation strategy. Optimization for area, speed, or
balanced.

OPTIONS Option mode (default or user). In the default mode, default options of tools,
as specified in the file options.default_<OPTIMIZATION_TARGET> will be
used. If you want to use non-default options of tools, please change this
variable to user, and modify the file options.user <OPTIMIZATION_TARGET>.

APPLICATION Name of an application. single_run, placement_search, and

exhaustive_search are currently supported. single_run performs a single run
through synthesis and implementation for all specified FPGA devices.
Placement search performs multiple runs with different values of the
parameters determining starting point of the placement, as specified in the
file config/placement_search.txt.

FPGA_VENDOR ...

Target FPGA vendor, i.e. Xilinx or Altera

END VENDOR

FPGA_FAMILY ... Target FPGA family of a specified vendor, i.e. Spartan3

END FAMILY

FPGA_DEVICES ... List of target FPGA devices based on a specified family and vendor. Device
END DEVICES names must be separated by comma. Two special modes of operation exist

for this option, best_match and all. For best_match, the script will search for
the smallest device that passes all criteria as specify by the user. For all, the
script will go through all the available devices of the specified family.

See Table 2 for details of available parameters.

Note : The special modes will search through the FPGA devices specified in
the library file located in the device_lib folder.

Appendix B : Xilinx FPGA_DEVICES specific options

Options

Explanation

MAX_SLICE_UTILIZATION

Maximum slice utilization ratio

MAX_BRAM_UTILIZATION

Maximum BRAM utilization ratio

MAX_DSP_UTILIZATION

Maximum DSP utilization ratio

MAX_MUL_UTILIZATION

Maximum multiplier utilization ratio

MAX_PIN_UTILIZATION

Maximum pin utilization ratio

SYN_CONSTRAINT_FILE

Path to a synthesis constraint file (*.xcf). If a contraint file is not used,
specify default

IMP_CONSTRAINT_FILE

Path to an implementation constraint file (*.ucf). If a contraint file is not
used, specify default

REQ_SYN_FREQ

Requested synthesis clock frequency

REQ_IMP_FREQ

Requested implementation clock frequency

Note : These options are located inside “FPGA_DEVICES ... END DEVICES” clause

Appendix C : Altera FPGA_DEVICES specific options

Options

Explanation

REQ_IMP_FREQ

Requested implementation frequency

Note : These options are located inside “FPGA_DEVICES ... END DEVICES” clause

Appendix D : “option.<option>_<optimization_target>.txt” options

Options

Explanation

XILINX_SYNTHESIS_TOOL

ALTERA_SYNTHESIS_TOOL

currently supported>

ACTEL_SYNTHESIS_TOOL

<currently unsupported>

XILINX_SYNPLIFY_OPT ...
END_OPT

<currently unsupported>

XILINX_XST_OPT ...
END_OPT

Options for Xilinx’s XST (synthesis)

ALTERA_QUARTUS_MAP_OP
T..
END_OPT

Options for Altera Mapping Tool (synthesis)

ALTERA_QUARTUS_FIT_OPT

END_OPT

Options for Altera Fitting Tool (implementation)

ACTEL_SYNPLIFY_OPT ...
END_OPT

<currently unsupported>

XILINX_NGDBUILD_OPT ...
END_OPT

Options for Xilinx’s NGDBUILD

XILINX_MAP_OPT ...
END_OPT

Options for Xilinx’s MAP

XILINX_PAR_OPT ...
END_OPT

Options for Xilinx’s PAR

Xilinx synthesis tool (SYNPLIFY or XST) <only XST is currently supported>
Altera synthesis tool (synplify pro or quartus_map) <only quartus_map is

XILINX_TRACE_OPT ...
END_OPT

Options for Xilinx’s PAR

Appendix E : “placement_search.txt” options

Options

Explanation

XILINX_COST_TABLE_VALUES

Xilinx’s cost table. Possible range is from 1 to 100

ALTERA_SEED_VALUES

Altera’s seed. Possible range is from 1 to 2°%-1

Appendix E : “exhaustive.<strategy_name>.txt” options

Options

Explanation

General Options

TARGET_CLK_FREQ

Target synthesis and implementation frequency. If Altera is used, only
implementation frequency is used.

RUN_ALL_OPTIONS

The tool will loop through all specified options if YES is selected.
Otherwise, it will stop whenever the target clock frequency is reached.

BEST_LEVEL_1_OPTION_SETS

Number of best combinations of options from Level 1 that will be used
for runs at Level 2.

Level 1 Options

XILINX_SYNTHESIS_TOOL

<currently unsupported>

XILINX_SYNPLIFY_OPT

<currently unsupported>

XILINX_XST_OPT

Xilinx’s XST options

XILINX_MAP_OPT

Xilinx’s MAP options

XILINX_PAR_OPT

Xilinx’s PAR options

Level 2 Options

XILINX_COST_TABLE_VALUES |

Xilinx’s parameter determining the starting placement point

Note : All options inside Level 1 (with the exception of synthesis tool option) must end with “END_OPT”

clause.

Options

Explanation

General Options

TARGET_CLK_FREQ

Target implementation frequency .

RUN_ALL_OPTIONS

The tool will loop through all specified options if YES is selected.
Otherwise, it will stop whenever the target clock frequency is reached.

BEST_LEVEL_1_OPTION_SETS

Number of best combinations of options from Level 1 that will be used
for runs at Level 2.

Level 1 Options

ALTERA_SYNTHESIS_TOOL

<currently unsupported>

ALTERA_SYNPLIFY_OPT

<currently unsupported>

ALTERA_QUARTUS_MAP_OP
T

Altera mapping tool options

ALTERA_QUARTUS_FIT_OPT

Altera fitting tool options

Level 2 Options

ALTERA_SEED_VALUES ’ Altera’s parameter determining the starting point for placement.

Note : All options inside Level 1 (with the exception of synthesis tool option) must end with “END_OPT”
clause.

