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•  Flexibility of the SHA-3 candidates in hardware in terms of 
speed-area trade-offs using 

 a. folding 
 b. unrolling 
 c. pipelining 
 d. embedded FPGA resources (embedded DSP units, memory blocks, etc.) 

•  FPGA performance metrics 
•  Summary of GMU results 
•  Presentation and comparison of FPGA results from various groups 

 Discussion of possible sources of discrepancies 
•  Pros and Cons of all candidates 

Outline 
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Features 
•  datapath width = state size 
•  optimization for throughput or throughput to area ratio 

 [rather than for area or power] 
•  typically [but not always] one clock cycle per one round/step 

High-Speed Architecture of a Hash Function 

 Our Target 
High-Speed Architecture Optimized for  
the Maximum Throughput to Area Ratio 
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•  datapath width = state size  
•  one clock cycle per one round/step 

Starting Point: Basic Iterative Architecture 

Block processing time = #R ⋅ T 

#R  = number of rounds/steps 
 T    = clock period 

Currently, most common architecture used to implement SHA-1, SHA-2, 
and many other hash functions.  
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•  datapath width = state size  
•  two clock cycles per one round/step 

Horizontal Folding 

Block processing time = (2⋅#R) * T’ 

T/2  <  T’  <  T 
typically T’ ≈ T/2 

Area/2 <  Area' < Area 

Typically Throughput/Area ratio increases 



7 

Horizontally Folded vs. Basic Iterative BLAKE 

x1 – basic iterative     /2(h) – folded horizontally by a factor of 2  
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Horizontal folding of CubeHash 
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Horizontally Folded vs. Basic Iterative CubeHash 

x1 – basic iterative         /2(h) – folded horizontally by a factor of 2 
x2 – two times unrolled  
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BLAKE:  two layers of G-functions  - folding by 2 :                               /2 

Fugue-256:  two iterations of (ROR3, CMIX, SMIX)  - folding by 2 :    /2 

Fugue-512:  four iterations of (ROR3, CMIX, SMIX) - folding by 4:      /4 

ECHO:  two layers of BIG.SubBytes - folding by 3/2:                         x2/3 

SHAvite-3-256:    three iterations of AES Round  - folding by 3 :         /3 

SHAvite-3-512:    four iterations of AES Round  - folding by 4:           /4 

SHA-3 Candidates Benefiting from Horizontal Folding 
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•  datapath width = state size  
•  one clock cycle per two rounds 

Unrolling 

Block processing time = (#R/2) * T’ 

T  <  T’  <  2⋅T 
typically T’ ≈ 2⋅T 

Area/2 <  Area' < 2⋅Area 
Typically Area’ ≈ 2⋅Area 

Typically Throughput/Area ratio decreases 
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Unrolling of CubeHash 

x1 – basic iterative         /2(h) – folded horizontally by a factor of 2 
x2 – two times unrolled  
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Unrolling of Hamsi 

x1 – basic iterative     x3 – unrolled by a factor of 3  
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Functions having non-uniform rounds/steps can benefit  
from unrolling. 

Examples: 
Skein: 8 consecutive rounds use 8 different rotation amounts. 
SIMD:  36 steps use 16 different rotation amounts. 

  The logic of a single round may be significantly simplified  
as a result of unrolling. 

How Can Functions Benefit from Unrolling? 
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Unrolling Skein 

x1 – basic iterative   x4 – unrolled by a factor of 4   x8 – unrolled be a factor of 8  
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Basic operation in Skein x1 and Skein x4 

Basic operation, MIX, in  
Skein x1  
(basic iterative)  

Basic operation, MIX, in  
Skein x4  
(4 times unrolled) 



17 

Basic operation in SIMD x1 and SIMD x4 

Operation required in  
SIMD x1  
(basic iterative)  

Equivalent operation in  
SIMD x4  
(4 times unrolled) 



18 

•  datapath width = state size/2  
•  two clock cycles per one round/step 

Block processing time = (2⋅#R) * T’ 

typically T’ ≈ T 
Area/2 <  Area' < Area 

How to Reduce Area? – The case for Vertical Folding 
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Folding of Luffa 

/5 

/N(v) – folded vertically by a factor of N        xN – unrolled by a factor of N 
x1 – basic iterative 
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Folding of ECHO 

/N(v) – folded vertically by a factor of N           x1 – basic iterative 
x2/3(h)  - folded horizontally by a factor of 3/2 [BIG.SubBytes logic reused]  
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Folding of Fugue 

x1 – basic iterative  /2(h) – folded horizontally by a factor of 2 
/2(h) /N(v) – folded horizontally by a factor of 2, and vertically by a factor of N 
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Folding of Groestl 

x1(P+Q) – basic iterative with P&Q executing in parallel 
x1(P/Q pp2) – basic iterative with P&Q sharing the same logic with two stages of pipelining  
/N(v) (P/Q pp2)  – folded vertically by a factor of N, shared P/Q with two stages of pipelining  
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Folding of SHAvite-3 

/3(h) – folded horizontally by a factor of 3 
/3(h) /N(v) – folded horizontally by a factor of 3, and vertically by a factor of N 
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BMW:  no clear round structure 

Basic architecture combinational 

Very large area 

One clock cycle per message block 

Special Case - BMW 
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New Folded Architecture of BMW 

New, previously not reported, 
folded architecture 

33 clock cycles per message  
block 

Significant reduction in 
the circuit area 
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Special Case - BMW 

x1 – basic iterative     /16(h) – f1 folded horizontally by a factor of 16  
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Combined Results for 256-bit SHA-3 Variants 
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Combined Results for 512-bit SHA-3 Variants 
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              Highest Flexibility, Best Area Reduction Factors        

BLAKE:                          x1,  /2(h),  /4(h),             /2, /4 (v) 
Luffa-256:                      x1                                   /3 (v) 
Luffa-512:                      x1                                   /5 (v) 

             High Flexibility, Medium Area Reduction Factors 
ECHO:                           x1,  x2/3                        /2, /4, /8, /16 (v) 
Fugue-256:                   x1,   /2(h),                     /2, /4, /8, /16 (v) 
Groestl:                x1(P+Q), x1(P/Q pp2)          /2, /4, /8 (P/Q pp2) (v) 
JH:                                      x1                            /2, /4, /8, /16, /32, /64 (v) 

Algorithms Ranked According to the Flexibility (1) 
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                                       Moderate Flexibility 

 BMW:                             x1              /16(h) 
 CubeHash:                    x1              /2(h) 
 SHAvite-3-256:             /3(h)           /2, /4 (v) 
 SHAvite-3-512:             /4(h)           /2, /4 (v) 
 Skein:                        x1, x4, x8 
 Shabal:                  x1, x2, x3, x4, x6 

                           Unknown, Most Likely Low Flexibility 
Keccak 
Hamsi 

Algorithms Ranked According to the Flexibility (2) 
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How to Increase the Speed? : The case for 
pipelining and parallel processing 

•   Protocols:     IPSec, SSL, WLAN (802.11) 

•   Minimum Required Throughput Range:   100 Mbit/s - 40 Gbit/s
(based on the specs of Security Processors from  
Cavium Networks, HiFn, and Broadcom) 

•   Supported sizes of packets:  40B - 1500B  
   1500 B = Maximum Transmission Unit (MTU) for Ethernet v2 
      576 B = Maximum Transmission Unit (MTU) for Internet IPv4 Path 

•   Most Common Operation Involving Hashing: HMAC 
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Cumulative Distribution of Packet Sizes 
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•  American standard 
  FIPS 198 

•  Arbitrary hash function  
  and key size 
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Execution Time for Short Messages up to 1000 bits 
Virtex 5, 256-bit variants of algorithms 
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Execution Time for Short Messages up to 1000 bits 
Virtex 5, 512-bit variants of algorithms 
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Multiple Packets Available for Parallel Processing 
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Parallel Processing 
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Pipelining 
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BMW vs. CubeHash (1) 
In Virtex 5: 

Clock period: 
CubeHash  -   5 ns 
BMW          - 100 ns 

Let us assume that the pipeline can be inserted every 5 ns 
(clock frequency = 200 MHz). 

Number of pipeline stages: 
CubeHash  -  1 
BMW          - 20 
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BMW vs. CubeHash (2) 
BMW: 
Before pipelining: 
Throughput = 512/(100ns) = 5.12 Gbit/s 
Area                                = 4400 CLB slices 
After pipelining: 
Throughput' = 512/(5ns) = 100 Gbit/s 
Area'            = 4400+20*0.1*4400 CLB slices = 13,200 CLB slices 
                       (assuming 10% increase in area per pipeline stage) 

CubeHash: 
Throughput = 256/(16*5ns)= 3.2 Gbit/s 
Area            = 700 CLB slices 
In order to reach the speed of 100 Gbit/s, 
the required area of CubeHash = 700 * (100/3.2) = 21,875 CLB slices 
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BMW vs. CubeHash (3) 
50 Gbit/s 

BMW: 
N=10 
Throughput' = 512/(10ns) = 51.2 Gbit/s 
Area'       = 4400+10*0.1*4400 CLB slices = 8,800 CLB slices 

CubeHash: 
In order to reach the speed of 50 Gbit/s: 

The required area of CubeHash = 700 * (50/3.2) = 10,938 CLB slices 
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Reported Pipelined Implementations by Savas et al. 

 Pipelined Implementations:  
                  Multi-Message Hashing by Savas et al. 

Number of pipeline stages 
Keccak  -  5  
Luffa      -  2  
BMW     - 18 

Results for Spartan3, Virtex 2, Virtex 4, 90nm ASIC. 
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Improvement of the Throughput/Area ratio 

               Spartan 3      Virtex 2      Virtex 4     ASIC 90nm 

Keccak         2.0              1.2              1.7               1.7 

Luffa             1.1              1.2              1.3              1.5 

BMW           11.5             11.0           10.8              1.8 
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Maximum Throughputs [Gbit/s] Reached 

                  Spartan 3      Virtex 2      Virtex 4     ASIC 90nm 

Keccak         14.9              15.0           22.3             74.4            

Luffa               6.0              12.5           13.9             35.4 

BMW             28.7             43.2           58.0            133.0 
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Thr/Area Thr Area Short msg. Thr/Area Thr Area Short msg. 

256-bit variants 512-bit variants 

BLAKE 
BMW 
CubeHash 
ECHO 
Fugue 
Groestl 
Hamsi 
JH 
Keccak 
Luffa 
Shabal 
SHAvite-3 
SIMD 
Skein 
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Overall Normalized Throughput/Area: 256-bit variants 
Normalized to SHA-256, Averaged over 7 FPGA families 
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results reported at the SHA-3 conference;  
Fugue, Shabal, and SIMD improved since then  
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Overall Normalized Throughput/Area: 512-bit variants 
Normalized to SHA-512, Averaged over 7 FPGA families 
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RAM Blocks and DSP Units 
In Xilinx and Altera FPGAs 

The Design Warrior’s Guide to FPGAs 
Devices, Tools, and Flows. ISBN 0750676043 

Copyright © 2004 Mentor Graphics Corp. (www.mentor.com) 

DSP Units 



Hash 
Algorithm 

DSP Adders DSP 
Multipliers 

Block 
Memories 

BLAKE Yes - Yes 

BMW Yes - - 

CubeHash Yes - - 

ECHO - - Yes 

Fugue - - Yes 

Groestl - - Yes 

Hamsi - - Yes 

JH - - Yes 

Keccak - - Yes 

Luffa - - - 

SHA-2 Yes - Yes 

Shabal Yes Yes - 

SHAvite-3 - - Yes 

SIMD Yes Yes Yes 

Skein Yes - - 



BLOCK MEMORIES 



Block Memories used to implement  
T-boxes/S-boxes 

• ECHO, SHAvite-3 
▫  AES-Sboxes (8x8) 
▫  AES-Tboxes (8x32) 

•  Fugue 
▫  AES-Sboxes (8x8) 
▫  Fugue-Tboxes (8x24) and (8x32) 

• Groestl 
▫  AES-Sboxes (8x8) 
▫  Groestl-Tboxes (8x40) 



• Hamsi  
▫  ROM in message expansion 

           8x4x256x32  = 256 kbit in Hamsi-256            
     

• Keccak, JH, SHA-2 
▫  Round constants only 

• BLAKE  
▫  Permutation 

    

Block Memories used to implement ROM 
and Round Constants 



DSP ADDERS  
& 

MULTIPLIERS 



DSP Adders 
•  CubeHash 
▫  32-bit addition  

•  Skein 
▫  64-bit addition 

•  BMW 
▫  32-bit or 64-bit Multioperand Addition 

•  BLAKE 
▫  32-bit Addition 

•  SHA-2 
▫  32-bit Multioperand Addition 

    



PRELIMINARY  RESULTS 



DSP Adders & Multipliers 

✔ 

✗ 

✗ 

✗ 

✔ 

✔ - Throughput increases ✗ -   Throughput decreases 
   (most likely as a result of design error) 



Block Memory & Adders 

✔ - Throughput increases ✗ -   Throughput decreases 
   (most likely as a result of design error) 

✔ 

✔ 

✗ 

✗ 
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Results by Other Groups:  
Comprehensive Comparisons 

Baldwin et al. 
 Institutions:  University College Cork, Ireland 
                        RMIT University, Melbourne, Australia 
                        Queen’s University Belfast, Belfast, UK 
 Presented at:    SHA-3 Candidate Conference 2010, FPL 2010 

Matsuo et al. 
 Institutions: National Institute of Information and Communications Technology, Japan 
                      Katholieke Universiteit Leuven, Belgium 
                      Virginia Tech, USA 
                      National Institute of Advanced Industrial Science and Technology, Japan 
                      The University of Electro-Communications, Japan 
 Presented at: HOST 2010 and SHA-3 Candidate Conference 2010 
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Guo et al. 

 Institutions:    Virginia Tech, USA 
 Presented at:   ePrint 2010/536 

Results by Other Groups:  
Comprehensive Comparisons 
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Results by Other Groups:  
Interesting Studies of Selected Algorithms 

Savas et al. 

 Institutions:       Sabanci University, Istanbul, Turkey 
 Presented at:       SHA-3 Candidate Conference 2010 

                Pipelined Architectures of BMW, Keccak, and Luffa. 

Detrey et al. 

 Institutions:      LORIA, INRIA / CNRS / Nancy Universit �e / SGDSN / ANSSI, France 
 Presented at:    Selected Areas in Cryptography, SAC 2010 

                     Excellent Implementation of Shabal 
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Differences: Padding 

Padding in hardware:  
           Baldwin et al.:  yes 
                    - under assumption that the message ends on a boundary of  
                     a 32-bit word 
                    - counters in the padding unit of the following functions 
                      form the critical path and thus affect the maximum clock frequency 
                                              Echo-256, Fugue-256/512, JH 

           Other groups:  no 

           GMU:  no results with padding yet 
                 universal padding circuit under development 
                   - arbitrary SHA-3 candidate, SHA-2, SHA-1 
                   - message allowed to end on a boundary of a word, byte, or bit 
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Differences: Interface (1) 

Baldwin et al.: 
     - 32-bit input bus 
     - one clock (the same clock for processing and i/o) 
    As a result, the interface substantially limits the throughput of the  
    following algorithms: 
                         BMW, Echo, Grøstl, Keccak. 

Matsuo et al., Guo et al.: 
     - compatible with SASEBO boards 
     - 16-bit input bus 
     - one clock (the same clock for processing and i/o) 
    As a result, the interface substantially limits the throughput for  
    majority of algorithms. 
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GMU:  
     - 64-bit input bus (for all algorithms except those with the block size = 32 bits) 
     - two clocks, if needed to assure that 
                     Load Time <= Processing Time 
       (only BMW for basic architectures) 
     - the interface does not restrict the speed of processing for any SHA-3 

candidate 

Differences: Interface (2) 
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In order to make the comparison fair, we make the following assumptions: 

Baldwin et al. 
    - Padding in Software 
    - Ideal Input-Output Bus 

Matsuo et al., Guo et al. 
    - Ideal Input-Output Bus 

Slightly favors other groups in terms of area, 
because our interface includes serial-to-parallel and parallel-to-serial  
converters, as well as message length counters. 

Differences: Interface (3) 
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                      Number of clock  
                      cycles per block 

   Function    Baldwin     GMU                       Differences Baldwin vs. GMU 

   Blake            40             21           horizontally folded by 4 vs. horizontally folded by 2 
   BMW              4               1           unbalanced architecture 
   ECHO             8             25           basic iterative vs. reuse of BIG.SubBytes  
   Fugue             7               2           unbalanced architecture 
   Groestl         10             21           parallel execution vs. quasi-pipelined architecture 
   Hamsi            6               3           2 vs. 1 clock cycle per round 
   SIMD            32               9           basic architecture vs. 4x unrolled architecture  

Explanation of Remaining Differences 
Baldwin et al. vs. GMU 
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                      Number of clock  
                      cycles per block 

   Function    Matsuo     GMU                       Differences Matsuo vs. GMU 

ECHO               99            25             4x vertically folded architecture  
                                                           vs. 3/2 horizontally folded architecture 
Groestl             10            21             parallel execution vs. quasi-pipelined architecture 
SIMD                46              9             basic architecture vs. 4x unrolled architecture; 
                                                          message expansion and main rounds 
                                                          performed sequentially vs. in parallel 

Keccak-256:   1024-bit block size vs. 1088-bit block size 
Skein-256-256 vs. Skein-512-256: 256 vs. 512-bit message block size and state size 

Explanation of Remaining Differences 
Matsuo et al. vs. GMU 
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Group 1:      Area:              Thr:                 Thr/Area: 
                    CubeHash, JH, Shabal, Skein 
Group 2:      Area:              Thr:                 Thr/Area: 
                    BMW, SIMD 
Group 3:      Area:              Thr:                 Thr/Area: 
                    BLAKE, Groestl, SHAvite-3, SHA-2 
Group 4:      Area:              Thr:                 Thr/Area: 
                    ECHO, Keccak 
Group 5:      Area:              Thr:                 Thr/Area: 
                    Hamsi, Luffa 
Group 6:      Area:              Thr:                 Thr/Area: 
                    Fugue 

x2 x2 

512-bit variant vs. 256-bit variant – Predicted Behavior 
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•  Easy way to predict approximately the change in speed and 
area when moving from a 256-bit to a 512-bit variant  

 in high-speed hardware implementations 

Hints for Designers of Hash Functions 
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BLAKE 
 + extremely flexible, multiple architectures 
   obtained by horizontal, vertical, and mixed folding 

BMW 
 + good potential for pipelining 
 + area efficient for high throughputs 
 - irregular structure 
 - difficulties with placing & routing 
 - quite complex folded architecture (late discovery), 
   smaller but less efficient than the basic architecture 
 - need for an extra input/output clock 

Pros and Cons of SHA-3 Candidates (1) 
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CubeHash 
 + small area 
 + good throughput to area ratio 
 + very suitable for parallel processing 
 + easy replacement for SHA-2 (similar in size and speed) 
 - relatively weak performance for short messages 
 - does not offer any significant performance advantage over SHA-2 

ECHO 
 + very flexible in terms of vertical folding 
 + suitable for use of embedded block memories 
   to implement AES S-boxes and/or T-boxes 
 + good performance for short messages 
 - large area of the basic architecture 

Pros and Cons of SHA-3 Candidates (2) 
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Fugue 
 + very flexible in terms of vertical folding 
 + suitable for use of embedded block memories 
   to implement AES S-boxes and T-boxes 
 - relatively slow for very short messages 
 - area grows and throughput decreases for a 512-bit variant 

Groestl 
 + suitable for quasi-pipelining (pipelining with one message) 
 + high throughput and throughput to area ratios 
 + very flexible in terms of vertical folding 
 + suitable for use of embedded block memories 
   to implement AES S-boxes and T-boxes 
 - relatively large area of the basic architecture 

Pros and Cons of SHA-3 Candidates (3) 
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Hamsi 
 + suitable for use of embedded block memories 
   to implement message expansion 
 - limited flexibility, no known folded architectures 

JH 
 +/- good potential for folding but with limited area improvement 

Keccak 
 + very high throughput and throughput to area ratio 
   especially for a 256-bit variant 
 + good potential for pipelining 
 - limited flexibility, no known folded architectures 

Pros and Cons of SHA-3 Candidates (4) 
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Luffa 
 + very high throughput and throughput to area ratio 
   for both 256 and 512-bit variant 
 + good flexibility: straightforward folded architectures for medium-speed 
   implementations 

Shabal 
 + extremely small area and high throughput to area ratio for Xilinx FPGAs 
   (does not carry to Altera FPGAs or ASICs) 
 + very suitable for parallel processing  
 - relatively small throughput of the basic architecture 
 - relatively weak performance for short messages 

Pros and Cons of SHA-3 Candidates (5) 
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SHAvite-3 
 + flexible in terms of vertical folding 
 + suitable for use of embedded block memories 
   to implement AES S-boxes and T-boxes 
 - complex key scheduling, difficult to fold or unroll 

SIMD 
 - big area of the basic architecture 
 - by far the worst throughput to area ratio 
 - most time consuming to implement and debug 
 - complex message expansion unit 
 + good potential for folding  

Pros and Cons of SHA-3 Candidates (6) 
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Skein 
 + good potential for pipelining 
 - relatively small throughput of the basic architecture before pipelining 

Pros and Cons of SHA-3 Candidates (7) 
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•  CHES 2010 paper     FPL 2010 paper   
•  Methodology      ATHENa features 
•  Results for 256-bit variants    Case studies 

•  Cryptology e-Print Archive, 2010/445, last updated on Oct. 10, 2010 
•  Detailed hierarchical block diagrams,  

•  60 diagrams for 15 functions 
•  Corresponding formulas for execution time and throughput 

•  ATHENa web site 
•  Most recent results 
•  Comparisons with results from other groups 
•  Optimum options of tools 

More About our Designs & Tools 



Questions? 

Thank you! 
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Questions? 

CERG:      http:/cryptography.gmu.edu  

ATHENa:  http:/cryptography.gmu.edu/athena  


