
1	

FPGA	 Benchmarking	 for	 	
High-‐Speed	 and	 Medium-‐Speed	

Implementa=ons	

Kris	 Gaj	
George	 Mason	 University	

U.S.A.	

2	

Ekawat Homsirikamol
Marcin Rogawski
Malik Umar Sharif
Rabia Shahid
Bilal Habib

Codes developed and results generated by:

3

•  Flexibility of the SHA-3 candidates in hardware in terms of
speed-area trade-offs using

 a. folding
 b. unrolling
 c. pipelining
 d. embedded FPGA resources (embedded DSP units, memory blocks, etc.)

•  FPGA performance metrics
•  Summary of GMU results
•  Presentation and comparison of FPGA results from various groups

 Discussion of possible sources of discrepancies
•  Pros and Cons of all candidates

Outline

4

Features
•  datapath width = state size
•  optimization for throughput or throughput to area ratio

 [rather than for area or power]
•  typically [but not always] one clock cycle per one round/step

High-Speed Architecture of a Hash Function

 Our Target
High-Speed Architecture Optimized for
the Maximum Throughput to Area Ratio

5

•  datapath width = state size
•  one clock cycle per one round/step

Starting Point: Basic Iterative Architecture

Block processing time = #R ⋅ T

#R = number of rounds/steps
 T = clock period

Currently, most common architecture used to implement SHA-1, SHA-2,
and many other hash functions.

6

•  datapath width = state size
•  two clock cycles per one round/step

Horizontal Folding

Block processing time = (2⋅#R) * T’

T/2 < T’ < T
typically T’ ≈ T/2

Area/2 < Area' < Area

Typically Throughput/Area ratio increases

7

Horizontally Folded vs. Basic Iterative BLAKE

x1 – basic iterative /2(h) – folded horizontally by a factor of 2

8

Horizontal folding of CubeHash

9

Horizontally Folded vs. Basic Iterative CubeHash

x1 – basic iterative /2(h) – folded horizontally by a factor of 2
x2 – two times unrolled

10

BLAKE: two layers of G-functions - folding by 2 : /2

Fugue-256: two iterations of (ROR3, CMIX, SMIX) - folding by 2 : /2

Fugue-512: four iterations of (ROR3, CMIX, SMIX) - folding by 4: /4

ECHO: two layers of BIG.SubBytes - folding by 3/2: x2/3

SHAvite-3-256: three iterations of AES Round - folding by 3 : /3

SHAvite-3-512: four iterations of AES Round - folding by 4: /4

SHA-3 Candidates Benefiting from Horizontal Folding

11

•  datapath width = state size
•  one clock cycle per two rounds

Unrolling

Block processing time = (#R/2) * T’

T < T’ < 2⋅T
typically T’ ≈ 2⋅T

Area/2 < Area' < 2⋅Area
Typically Area’ ≈ 2⋅Area

Typically Throughput/Area ratio decreases

12

Unrolling of CubeHash

x1 – basic iterative /2(h) – folded horizontally by a factor of 2
x2 – two times unrolled

13

Unrolling of Hamsi

x1 – basic iterative x3 – unrolled by a factor of 3

14

Functions having non-uniform rounds/steps can benefit
from unrolling.

Examples:
Skein: 8 consecutive rounds use 8 different rotation amounts.
SIMD: 36 steps use 16 different rotation amounts.

 The logic of a single round may be significantly simplified
as a result of unrolling.

How Can Functions Benefit from Unrolling?

15

Unrolling Skein

x1 – basic iterative x4 – unrolled by a factor of 4 x8 – unrolled be a factor of 8

16

Basic operation in Skein x1 and Skein x4

Basic operation, MIX, in
Skein x1
(basic iterative)

Basic operation, MIX, in
Skein x4
(4 times unrolled)

17

Basic operation in SIMD x1 and SIMD x4

Operation required in
SIMD x1
(basic iterative)

Equivalent operation in
SIMD x4
(4 times unrolled)

18

•  datapath width = state size/2
•  two clock cycles per one round/step

Block processing time = (2⋅#R) * T’

typically T’ ≈ T
Area/2 < Area' < Area

How to Reduce Area? – The case for Vertical Folding

19

Folding of Luffa

/5

/N(v) – folded vertically by a factor of N xN – unrolled by a factor of N
x1 – basic iterative

20

Folding of ECHO

/N(v) – folded vertically by a factor of N x1 – basic iterative
x2/3(h) - folded horizontally by a factor of 3/2 [BIG.SubBytes logic reused]

21

Folding of Fugue

x1 – basic iterative /2(h) – folded horizontally by a factor of 2
/2(h) /N(v) – folded horizontally by a factor of 2, and vertically by a factor of N

22

Folding of Groestl

x1(P+Q) – basic iterative with P&Q executing in parallel
x1(P/Q pp2) – basic iterative with P&Q sharing the same logic with two stages of pipelining
/N(v) (P/Q pp2) – folded vertically by a factor of N, shared P/Q with two stages of pipelining

23

Folding of SHAvite-3

/3(h) – folded horizontally by a factor of 3
/3(h) /N(v) – folded horizontally by a factor of 3, and vertically by a factor of N

24

BMW: no clear round structure

Basic architecture combinational

Very large area

One clock cycle per message block

Special Case - BMW

25

New Folded Architecture of BMW

New, previously not reported,
folded architecture

33 clock cycles per message
block

Significant reduction in
the circuit area

26

Special Case - BMW

x1 – basic iterative /16(h) – f1 folded horizontally by a factor of 16

27

Combined Results for 256-bit SHA-3 Variants

28

Combined Results for 512-bit SHA-3 Variants

29

 Highest Flexibility, Best Area Reduction Factors

BLAKE: x1, /2(h), /4(h), /2, /4 (v)
Luffa-256: x1 /3 (v)
Luffa-512: x1 /5 (v)

 High Flexibility, Medium Area Reduction Factors
ECHO: x1, x2/3 /2, /4, /8, /16 (v)
Fugue-256: x1, /2(h), /2, /4, /8, /16 (v)
Groestl: x1(P+Q), x1(P/Q pp2) /2, /4, /8 (P/Q pp2) (v)
JH: x1 /2, /4, /8, /16, /32, /64 (v)

Algorithms Ranked According to the Flexibility (1)

30

 Moderate Flexibility

 BMW: x1 /16(h)
 CubeHash: x1 /2(h)
 SHAvite-3-256: /3(h) /2, /4 (v)
 SHAvite-3-512: /4(h) /2, /4 (v)
 Skein: x1, x4, x8
 Shabal: x1, x2, x3, x4, x6

 Unknown, Most Likely Low Flexibility
Keccak
Hamsi

Algorithms Ranked According to the Flexibility (2)

31

How to Increase the Speed? : The case for
pipelining and parallel processing

•  Protocols: IPSec, SSL, WLAN (802.11)

•  Minimum Required Throughput Range: 100 Mbit/s - 40 Gbit/s
(based on the specs of Security Processors from
Cavium Networks, HiFn, and Broadcom)

•  Supported sizes of packets: 40B - 1500B
 1500 B = Maximum Transmission Unit (MTU) for Ethernet v2
 576 B = Maximum Transmission Unit (MTU) for Internet IPv4 Path

•  Most Common Operation Involving Hashing: HMAC

32

Cumulative Distribution of Packet Sizes

=

⊕

=

⊕

KEY

KEY

ipad

opad

KEY’

KEY”

h

h

message m

HMAC

HMAC

•  American standard
 FIPS 198

•  Arbitrary hash function
 and key size

34

Execution Time for Short Messages up to 1000 bits
Virtex 5, 256-bit variants of algorithms

35

Execution Time for Short Messages up to 1000 bits
Virtex 5, 512-bit variants of algorithms

36

Multiple Packets Available for Parallel Processing

37

Data Stream 1 Data Stream k

Parallel Processing

38

Pipelining

H

+

R 1

IV

K t W t

H

IV

R 2
step t, stage 1

step t, stage 2

Stage 1

Stage 2

39

BMW vs. CubeHash (1)
In Virtex 5:

Clock period:
CubeHash - 5 ns
BMW - 100 ns

Let us assume that the pipeline can be inserted every 5 ns
(clock frequency = 200 MHz).

Number of pipeline stages:
CubeHash - 1
BMW - 20

40

BMW vs. CubeHash (2)
BMW:
Before pipelining:
Throughput = 512/(100ns) = 5.12 Gbit/s
Area = 4400 CLB slices
After pipelining:
Throughput' = 512/(5ns) = 100 Gbit/s
Area' = 4400+20*0.1*4400 CLB slices = 13,200 CLB slices
 (assuming 10% increase in area per pipeline stage)

CubeHash:
Throughput = 256/(16*5ns)= 3.2 Gbit/s
Area = 700 CLB slices
In order to reach the speed of 100 Gbit/s,
the required area of CubeHash = 700 * (100/3.2) = 21,875 CLB slices

41

BMW vs. CubeHash (3)
50 Gbit/s

BMW:
N=10
Throughput' = 512/(10ns) = 51.2 Gbit/s
Area' = 4400+10*0.1*4400 CLB slices = 8,800 CLB slices

CubeHash:
In order to reach the speed of 50 Gbit/s:

The required area of CubeHash = 700 * (50/3.2) = 10,938 CLB slices

42

Reported Pipelined Implementations by Savas et al.

 Pipelined Implementations:
 Multi-Message Hashing by Savas et al.

Number of pipeline stages
Keccak - 5
Luffa - 2
BMW - 18

Results for Spartan3, Virtex 2, Virtex 4, 90nm ASIC.

43

Improvement of the Throughput/Area ratio

 Spartan 3 Virtex 2 Virtex 4 ASIC 90nm

Keccak 2.0 1.2 1.7 1.7

Luffa 1.1 1.2 1.3 1.5

BMW 11.5 11.0 10.8 1.8

44

Maximum Throughputs [Gbit/s] Reached

 Spartan 3 Virtex 2 Virtex 4 ASIC 90nm

Keccak 14.9 15.0 22.3 74.4

Luffa 6.0 12.5 13.9 35.4

BMW 28.7 43.2 58.0 133.0

45	

Thr/Area Thr Area Short msg. Thr/Area Thr Area Short msg.

256-bit variants 512-bit variants

BLAKE
BMW
CubeHash
ECHO
Fugue
Groestl
Hamsi
JH
Keccak
Luffa
Shabal
SHAvite-3
SIMD
Skein

46

Overall Normalized Throughput/Area: 256-bit variants
Normalized to SHA-256, Averaged over 7 FPGA families

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

results reported at the SHA-3 conference;
Fugue, Shabal, and SIMD improved since then

47

Overall Normalized Throughput/Area: 512-bit variants
Normalized to SHA-512, Averaged over 7 FPGA families

0

0.2

0.4

0.6

0.8

1

1.2

1.4

results reported at the SHA-3 conference;
Fugue, Shabal, and SIMD improved since then

48

B
lock R

A
M

s

B
lock R

A
M

s

Configurable
Logic
Blocks

I/O
Blocks

What is an FPGA?

Block
RAMs

49

RAM Blocks and DSP Units
In Xilinx and Altera FPGAs

The Design Warrior’s Guide to FPGAs
Devices, Tools, and Flows. ISBN 0750676043

Copyright © 2004 Mentor Graphics Corp. (www.mentor.com)

DSP Units

Hash
Algorithm

DSP Adders DSP
Multipliers

Block
Memories

BLAKE Yes - Yes

BMW Yes - -

CubeHash Yes - -

ECHO - - Yes

Fugue - - Yes

Groestl - - Yes

Hamsi - - Yes

JH - - Yes

Keccak - - Yes

Luffa - - -

SHA-2 Yes - Yes

Shabal Yes Yes -

SHAvite-3 - - Yes

SIMD Yes Yes Yes

Skein Yes - -

BLOCK MEMORIES

Block Memories used to implement
T-boxes/S-boxes

• ECHO, SHAvite-3
▫  AES-Sboxes (8x8)
▫  AES-Tboxes (8x32)

•  Fugue
▫  AES-Sboxes (8x8)
▫  Fugue-Tboxes (8x24) and (8x32)

• Groestl
▫  AES-Sboxes (8x8)
▫  Groestl-Tboxes (8x40)

• Hamsi
▫  ROM in message expansion

 8x4x256x32 = 256 kbit in Hamsi-256

• Keccak, JH, SHA-2
▫  Round constants only

• BLAKE
▫  Permutation

Block Memories used to implement ROM
and Round Constants

DSP ADDERS
&

MULTIPLIERS

DSP Adders
•  CubeHash
▫  32-bit addition

•  Skein
▫  64-bit addition

•  BMW
▫  32-bit or 64-bit Multioperand Addition

•  BLAKE
▫  32-bit Addition

•  SHA-2
▫  32-bit Multioperand Addition

PRELIMINARY RESULTS

DSP Adders & Multipliers

✔

✗

✗

✗

✔

✔ - Throughput increases ✗ -  Throughput decreases
 (most likely as a result of design error)

Block Memory & Adders

✔ - Throughput increases ✗ -  Throughput decreases
 (most likely as a result of design error)

✔

✔

✗

✗

59

Results by Other Groups:
Comprehensive Comparisons

Baldwin et al.
 Institutions: University College Cork, Ireland
 RMIT University, Melbourne, Australia
 Queen’s University Belfast, Belfast, UK
 Presented at: SHA-3 Candidate Conference 2010, FPL 2010

Matsuo et al.
 Institutions: National Institute of Information and Communications Technology, Japan
 Katholieke Universiteit Leuven, Belgium
 Virginia Tech, USA
 National Institute of Advanced Industrial Science and Technology, Japan
 The University of Electro-Communications, Japan
 Presented at: HOST 2010 and SHA-3 Candidate Conference 2010

60

Guo et al.

 Institutions: Virginia Tech, USA
 Presented at: ePrint 2010/536

Results by Other Groups:
Comprehensive Comparisons

61

Results by Other Groups:
Interesting Studies of Selected Algorithms

Savas et al.

 Institutions: Sabanci University, Istanbul, Turkey
 Presented at: SHA-3 Candidate Conference 2010

 Pipelined Architectures of BMW, Keccak, and Luffa.

Detrey et al.

 Institutions: LORIA, INRIA / CNRS / Nancy Universit �e / SGDSN / ANSSI, France
 Presented at: Selected Areas in Cryptography, SAC 2010

 Excellent Implementation of Shabal

62

Differences: Padding

Padding in hardware:
 Baldwin et al.: yes
 - under assumption that the message ends on a boundary of
 a 32-bit word
 - counters in the padding unit of the following functions
 form the critical path and thus affect the maximum clock frequency
 Echo-256, Fugue-256/512, JH

 Other groups: no

 GMU: no results with padding yet
 universal padding circuit under development
 - arbitrary SHA-3 candidate, SHA-2, SHA-1
 - message allowed to end on a boundary of a word, byte, or bit

63

Differences: Interface (1)

Baldwin et al.:
 - 32-bit input bus
 - one clock (the same clock for processing and i/o)
 As a result, the interface substantially limits the throughput of the
 following algorithms:
 BMW, Echo, Grøstl, Keccak.

Matsuo et al., Guo et al.:
 - compatible with SASEBO boards
 - 16-bit input bus
 - one clock (the same clock for processing and i/o)
 As a result, the interface substantially limits the throughput for
 majority of algorithms.

64

GMU:
 - 64-bit input bus (for all algorithms except those with the block size = 32 bits)
 - two clocks, if needed to assure that
 Load Time <= Processing Time
 (only BMW for basic architectures)
 - the interface does not restrict the speed of processing for any SHA-3

candidate

Differences: Interface (2)

65

In order to make the comparison fair, we make the following assumptions:

Baldwin et al.
 - Padding in Software
 - Ideal Input-Output Bus

Matsuo et al., Guo et al.
 - Ideal Input-Output Bus

Slightly favors other groups in terms of area,
because our interface includes serial-to-parallel and parallel-to-serial
converters, as well as message length counters.

Differences: Interface (3)

66

67

68

69

 Number of clock
 cycles per block

 Function Baldwin GMU Differences Baldwin vs. GMU

 Blake 40 21 horizontally folded by 4 vs. horizontally folded by 2
 BMW 4 1 unbalanced architecture
 ECHO 8 25 basic iterative vs. reuse of BIG.SubBytes
 Fugue 7 2 unbalanced architecture
 Groestl 10 21 parallel execution vs. quasi-pipelined architecture
 Hamsi 6 3 2 vs. 1 clock cycle per round
 SIMD 32 9 basic architecture vs. 4x unrolled architecture

Explanation of Remaining Differences
Baldwin et al. vs. GMU

70

 Number of clock
 cycles per block

 Function Matsuo GMU Differences Matsuo vs. GMU

ECHO 99 25 4x vertically folded architecture
 vs. 3/2 horizontally folded architecture
Groestl 10 21 parallel execution vs. quasi-pipelined architecture
SIMD 46 9 basic architecture vs. 4x unrolled architecture;
 message expansion and main rounds
 performed sequentially vs. in parallel

Keccak-256: 1024-bit block size vs. 1088-bit block size
Skein-256-256 vs. Skein-512-256: 256 vs. 512-bit message block size and state size

Explanation of Remaining Differences
Matsuo et al. vs. GMU

71

72

73

74

75

Group 1: Area: Thr: Thr/Area:
 CubeHash, JH, Shabal, Skein
Group 2: Area: Thr: Thr/Area:
 BMW, SIMD
Group 3: Area: Thr: Thr/Area:
 BLAKE, Groestl, SHAvite-3, SHA-2
Group 4: Area: Thr: Thr/Area:
 ECHO, Keccak
Group 5: Area: Thr: Thr/Area:
 Hamsi, Luffa
Group 6: Area: Thr: Thr/Area:
 Fugue

x2 x2

512-bit variant vs. 256-bit variant – Predicted Behavior

76

•  Easy way to predict approximately the change in speed and
area when moving from a 256-bit to a 512-bit variant

 in high-speed hardware implementations

Hints for Designers of Hash Functions

77

BLAKE
 + extremely flexible, multiple architectures
 obtained by horizontal, vertical, and mixed folding

BMW
 + good potential for pipelining
 + area efficient for high throughputs
 - irregular structure
 - difficulties with placing & routing
 - quite complex folded architecture (late discovery),
 smaller but less efficient than the basic architecture
 - need for an extra input/output clock

Pros and Cons of SHA-3 Candidates (1)

78

CubeHash
 + small area
 + good throughput to area ratio
 + very suitable for parallel processing
 + easy replacement for SHA-2 (similar in size and speed)
 - relatively weak performance for short messages
 - does not offer any significant performance advantage over SHA-2

ECHO
 + very flexible in terms of vertical folding
 + suitable for use of embedded block memories
 to implement AES S-boxes and/or T-boxes
 + good performance for short messages
 - large area of the basic architecture

Pros and Cons of SHA-3 Candidates (2)

79

Fugue
 + very flexible in terms of vertical folding
 + suitable for use of embedded block memories
 to implement AES S-boxes and T-boxes
 - relatively slow for very short messages
 - area grows and throughput decreases for a 512-bit variant

Groestl
 + suitable for quasi-pipelining (pipelining with one message)
 + high throughput and throughput to area ratios
 + very flexible in terms of vertical folding
 + suitable for use of embedded block memories
 to implement AES S-boxes and T-boxes
 - relatively large area of the basic architecture

Pros and Cons of SHA-3 Candidates (3)

80

Hamsi
 + suitable for use of embedded block memories
 to implement message expansion
 - limited flexibility, no known folded architectures

JH
 +/- good potential for folding but with limited area improvement

Keccak
 + very high throughput and throughput to area ratio
 especially for a 256-bit variant
 + good potential for pipelining
 - limited flexibility, no known folded architectures

Pros and Cons of SHA-3 Candidates (4)

81

Luffa
 + very high throughput and throughput to area ratio
 for both 256 and 512-bit variant
 + good flexibility: straightforward folded architectures for medium-speed
 implementations

Shabal
 + extremely small area and high throughput to area ratio for Xilinx FPGAs
 (does not carry to Altera FPGAs or ASICs)
 + very suitable for parallel processing
 - relatively small throughput of the basic architecture
 - relatively weak performance for short messages

Pros and Cons of SHA-3 Candidates (5)

82

SHAvite-3
 + flexible in terms of vertical folding
 + suitable for use of embedded block memories
 to implement AES S-boxes and T-boxes
 - complex key scheduling, difficult to fold or unroll

SIMD
 - big area of the basic architecture
 - by far the worst throughput to area ratio
 - most time consuming to implement and debug
 - complex message expansion unit
 + good potential for folding

Pros and Cons of SHA-3 Candidates (6)

83

Skein
 + good potential for pipelining
 - relatively small throughput of the basic architecture before pipelining

Pros and Cons of SHA-3 Candidates (7)

84

•  CHES 2010 paper FPL 2010 paper
•  Methodology ATHENa features
•  Results for 256-bit variants Case studies

•  Cryptology e-Print Archive, 2010/445, last updated on Oct. 10, 2010
•  Detailed hierarchical block diagrams,

•  60 diagrams for 15 functions
•  Corresponding formulas for execution time and throughput

•  ATHENa web site
•  Most recent results
•  Comparisons with results from other groups
•  Optimum options of tools

More About our Designs & Tools

Questions?

Thank you!

85

Questions?

CERG: http:/cryptography.gmu.edu

ATHENa: http:/cryptography.gmu.edu/athena

