
Evaluation Report

Nicolai Müller
Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany

E-Mail: nicolai.mueller@rub.de

Amir Moradi
University of Cologne, Institute for Computer Science, Germany

E-Mail: amir.moradi@uni-koeln.de

July 31, 2022

1 Target

1. Name: ascon v3

2. Algorithm: Ascon-128

3. Authors: Robert Primas and Rishub Nagpal (Institute of Applied Information Processing
and Communications (IAIK), Graz University of Technology, Austria)

4. URL: https://www.dropbox.com/s/8xygtv2u1hau9um/ASCON_IAIK.zip?dl=0&file_subpath=
%2Fhardware%2Fascon_lwc%2Fsrc_rtl%2Fv3

5. Protection Method: Domain Oriented Masking [3]

6. Protection Order: 2

2 Setup

We evaluate the robust probing security of a given design, including the combined occurrence
of glitches and transitions [1] by applying PROLEAD [4]. PROLEAD, a leakage detection tool
publicly available at GitHub1, performs logic simulations at the gate level and applies statistical
methods to evaluate the robust probing security of a circuit. For more information regarding
PROLEAD, we refer to the PROLEAD wiki2 and the original paper [4].

3 Evaluation

3.1 Netlist Generation

To generate a gate-level netlist from the given rtl source code, we synthesize the design with design
compiler version O-2018.06-SP4 for linux64 - Nov 27, 2018. As the ASCON round function was
already verified by the authors by using COCO [2], we choose CryptoCore SCA as the top module
to cover the whole crypto core. Hence, the evaluation covers the complete encryption of a single
plaintext. As the given source code contains several parts whose syntax is not supported by the
design compiler, we rewrote the concerned parts in CryptoCore SCA.vhd and design pkg.vhd in
such a way that the syntax is supported by the design compiler. However, this does not affect the
security or functionality of the design. The modified rtl code and the resulting gate-level netlist
are given in the supplementary material.

1https://github.com/ChairImpSec/PROLEAD
2https://github.com/ChairImpSec/PROLEAD/wiki

1

nicolai.mueller@rub.de]
amir.moradi@uni-koeln.de
https://www.dropbox.com/s/8xygtv2u1hau9um/ASCON_IAIK.zip?dl=0&file_subpath=%2Fhardware%2Fascon_lwc%2Fsrc_rtl%2Fv3
https://www.dropbox.com/s/8xygtv2u1hau9um/ASCON_IAIK.zip?dl=0&file_subpath=%2Fhardware%2Fascon_lwc%2Fsrc_rtl%2Fv3
https://github.com/ChairImpSec/PROLEAD
https://github.com/ChairImpSec/PROLEAD/wiki
https://github.com/ChairImpSec/PROLEAD
https://github.com/ChairImpSec/PROLEAD/wiki


3.2 Evaluation Settings

To configure PROLEAD, we simulate the given design with Vivado 2020.2. Figure 1 shows the
first 80 clock cycles of the simulation.

Figure 1: Simulation results encompassing the first key load and the first encryption procedure.

PROLEAD expects an initial sequence of inputs. Hence, we configure PROLEAD in a way
that all inputs signals of CryptoCore SCA are set the same as in the simulation. This means that
PROLEAD initiates the run by loading a shared key and shared plaintext. Furthermore, we stop
the simulation if the output signal bdo valid goes high. This indicates that a single encryption
procedure is finished. In short, PROLEAD simulates the loading and the complete encryption of a
single plaintext. For the leakage detection, we perform a uniform and first-order fixed vs. random
G-test conducting around 100 million simulations.

3.3 Results

For the first experiment, we evaluate the security under the glitch-extended probing model (with-
out considering transitions). We detect strong first-order leakage by simulating around 1 million
encryptions. The probe, causing the leakage, was placed on wire n41367 which is the input wire of
the register that stores the msg auth signal. Hence, it becomes clear that a probe on n41367 causes
leakage as the tag checking procedure is unprotected. The results and the reports generated by
PROLEAD are given in results compact0. Since we want to ignore the unprotected tag checking
for the following experiment, we exclude the probe on n41367 from the evaluation. Moreover,
we include the occurrence of transitions to the verification. As evaluating second-order probing
security is computationally expensive, we focus the evaluation on the second-order security of the
first round. Moreover, we first evaluate the circuit using a reduced number of simulations, e.g., 5
million (cf. results compact1), and then consider a reduced set of most leaking probing sets and
re-run the evaluations using 100 million simulations (cf. results compact2). We end up with a
−log10(p)-value of 2.080879 which is under the internal 5.0 threshold. In summary, we did not find
any leakage in the protected parts of the CryptoCore SCA module. We, therefore, assume that the
CryptoCore SCA module (except for the tag checking procedure) is robust probing secure.

2



References

[1] Faust, S., Grosso, V., Pozo, S. M. D., Paglialonga, C., and Standaert, F. Com-
posable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model.
IACR TCHES 2018, 3 (2018), 89–120.

[2] Gigerl, B., Hadzic, V., Primas, R., Mangard, S., and Bloem, R. Coco: Co-Design
and Co-Verification of Masked Software Implementations on CPUs. In 30th USENIX Secu-
rity Symposium, USENIX Security 2021, August 11-13, 2021 (2021), USENIX Association,
pp. 1469–1468.

[3] Groß, H., Mangard, S., and Korak, T. Domain-Oriented Masking: Compact Masked
Hardware Implementations with Arbitrary Protection Order. In TIS@CCS 2016 (2016), B. Bil-
gin, S. Nikova, and V. Rijmen, Eds., ACM, p. 3.

[4] Müller, N., and Moradi, A. PROLEAD - A Probing-Based Hardware Leakage Detection
Tool. Cryptology ePrint Archive, Paper 2022/965, 2022. https://eprint.iacr.org/2022/

965.

3

https://eprint.iacr.org/2022/965
https://eprint.iacr.org/2022/965

	Target
	Setup
	Evaluation
	Netlist Generation
	Evaluation Settings
	Results


