
Implementer’s Guide to
Hardware Implementations

Compliant with the Hardware API
for Lightweight Cryptography

version 1.0.3

Michael Tempelmeier1, Farnoud Farahmand2,
Ekawat Homsirikamol3, William Diehl4,

Jens-Peter Kaps2, and Kris Gaj2

1Lehrstuhl für Sicherheit in der Informationstechnik
Technische Universität München

80333 München, Germany
michael.tempelmeier@tum.de

2Cryptographic Engineering Research Group
George Mason University

Fairfax, Virginia 22030, USA
{ffarahma, jkaps, kgaj}@gmu.edu

3Independent Researcher
ekawat@gmail.com

4Signatures Analysis Lab
Virginia Tech

Blacksburg, Virginia 24061, USA
wdiehl@vt.edu

October 24, 2020

Contents

1 Introduction 4

2 Compliance with the Requirements for Fair Benchmarking 7

3 Top-level Block Diagram 9
3.1 PreProcessor . 9
3.2 PostProcessor . 11
3.3 Header FIFO . 11

4 LWC Core Development 12
4.1 Introduction . 12
4.2 The LWC Configuration . 12
4.3 I/O Port Widths . 13
4.4 Limitations . 14

5 CryptoCore Development 16
5.1 Byte Order . 16
5.2 Interface . 16
5.3 Handshakes . 19
5.4 Design Procedure . 23
5.5 Dummy Authenticated Cipher 26
5.6 Dummy Hash . 28

6 Verification 29
6.1 Test vector generation (cryptotvgen) 29
6.2 Hardware Simulation . 33
6.3 Hardware Testing . 35

7 Generation and Publication of Results 39

2

8 Differences Compared to the CAESAR Hardware API
Development Package 40
8.1 Functionality . 40
8.2 Internal Structure . 42
8.3 Implementer’s Guide . 42

Appendix Appendix A: cryptotvgen help 43

Bibliography 55

3

1 Introduction

The primary purpose of this publication is to provide support and guidance
for hardware designers interested in efficient implementation and bench-
marking of submissions to the NIST Lightweight Cryptography Standard-
ization Process [1]. To assure the fairness of benchmarking and compati-
bility among implementations of the same algorithm by different designers,
Hardware API for Lightweight Cryptography (LWC) was created [2]. The
major parts of this API include the minimum compliance criteria, inter-
face, communication protocol, and timing characteristics supported by the
implemented core. For the purpose of fair comparison with the existing
standards, as well as candidates in the earlier CAESAR contest (Compe-
tition for Authenticated Encryption: Security, Applicability, and Robust-
ness) [3], conducted in the period 2013-2019, our proposed implementation
and benchmarking framework is not limited to submissions to the current
NIST standardization process. Instead, it attempts to support lightweight
implementations of all authenticated ciphers (a.k.a. authenticated encryp-
tion with associated data (AEAD) algorithms) with an optional hash func-
tionality.

In order to speed up the development of multiple implementations nec-
essary for fair evaluation of candidates in the NIST standardization process,
we have created the Development Package for Lightweight Cryptography.
As a part of this package, the designers are provided with the following
support aimed at speeding-up and simplifying the development process:

1. universal top-level block diagram of the main core, called LWC, in-
cluding four lower-level units called the PreProcessor, CryptoCore,
Header FIFO, and PostProcessor

2. universal VHDL code for the PreProcessor, PostProcessor, and Header
FIFO

4

3. hardware interface for all major building blocks, with the special focus
on CryptoCore

4. recommended design procedure for the CryptoCore, and its integra-
tion with the remaining three units comprising the LWC core

5. reference VHDL code of an example CryptoCore for a dummy au-
thenticated cipher with hash functionality, fully verified for correct
functionality

6. universal testbench suitable for full verification of any implementation
of an LWC core compliant with the proposed LWC Hardware API

7. universal test vector generator, based on the reference C implemen-
tations of the respective authenticated ciphers and hash functions.

In this document, we describe all these supporting materials one by one.
It should be stressed that implementations of authenticated ciphers and

hash functions compliant with the LWC Hardware API can also be developed
without using any resources described in this document, by just following
directly the specification of the LWC Hardware API.

Depending on the personal or team preference, the designers can choose
one of three major approaches:

1. using only the specification of the LWC Hardware API, and developing
the entire design, hardware description language code, and verification
framework from scratch

2. using only selected components of the Development Package, e.g., a
universal test vector generator and a universal testbench

3. using all resources of the Development Package.

The more that the Development Package is used, the shorter the devel-
opment time is likely to become. On the other hand, the obtained results,
e.g., in terms of resource utilization, maximum clock frequency, latency, and
throughput are likely to be very comparable, with only minor gains (typi-
cally only in terms of resource utilization) achieved by using Approach 1.

The users following Approach 1 are encouraged to read at least Chap-
ters 2 and 7. The users following Approach 2 are encouraged to read addi-
tionally Chapter 6. Finally, the users following Approach 3 should consider
getting familiar with the entire document.

5

This document is, on one hand, a subset of the Implementer’s Guide
developed during the CAESAR competition [4], as all chapters devoted
specifically to high-speed implementations have been eliminated. On the
other hand, it also contains substantial extensions and updates compared to
the CAESAR’s Implementer’s Guide, especially in Chapters 5 and 6. Hard-
ware designers familiar with the CAESAR Development Package [5] and the
associated Implementer’s Guide [4] should consider reading Chapter 8 first.

6

2 Compliance with the
Requirements for Fair
Benchmarking

In this chapter, we focus on the requirements that have to be met for
the code to be suitable for evaluation and ranking of candidates in the
Lightweight Cryptography Standardization Process.

First and foremost, the design must meet all requirements formulated
in the specification of the Hardware API for Lightweight Cryptography [2].

However, it is strongly recommended that the hardware description lan-
guage (HDL) code meets the following additional guidelines:

1. The primary HDL code should be portable among multiple technolo-
gies and supported by a wide variety of tools. In particular, this code
should be free of any vendor-specific constructs, directives, macros,
primitives, etc. The code optimized for a specific subset of devices
and/or tools of a particular vendor can be submitted as well, but it
will be compared only with the code optimized in the same fashion.

2. The implementation should use only storage elements based on flip-
flops, rather than latches, which is necessary to ensure consistent anal-
ysis of maximum clock frequency and area. Flip-flops should be active
on only one edge of the clock (preferably the rising edge of the clock).

3. Implementations should not use tri-state buffers or scan-cell flip flops.

4. Coding guidelines regarding reset (synchronous vs. asynchronous,
active-high vs. active-low) vary between FPGAs and ASICs, as well
as among various vendors. The designers have the freedom to apply
different styles, including a hybrid approach, in which some portions

7

of the circuit treat the reset signal as synchronous and other portions
as asynchronous. At the same time, the designers should be aware
that this choice may affect the area, maximum clock frequency, and
power consumption of their circuit. As a part of evaluating candi-
dates in the NIST standardization process, verification and FPGA
benchmarking will be performed under the assumption that the reset
is by default synchronous and active high. In particular, our Develop-
ment Package, containing portions of the code common for multiple
ciphers/hash functions, as well as our universal testbench, will sup-
port only this type of reset. Other types of reset can be supported as
non-default options, for verification and benchmarking using different
tools and implementation targets (e.g., ASICs).

5. Each implementation should provide a comma-separated values (CSV)
file of generic parameters and allowed combinations of their values.
Each column should represent a generic parameter, and each row
should be a legitimate combination of the generic values. Although
this file is not used by the current version of the Development Package,
it may be used in the future by the extended testbench and synthe-
sis scripts to easily iterate over all possible variants of the submitted
design.

The code that does not follow these guidelines, with the special focus
on compliance with [2], may be flagged during the initial review process as
not fully conforming to the requirements of the fair benchmarking process.

8

3 Top-level Block Diagram

Fig. 3.1 shows the proposed top-level block diagram of the LWC core, imple-
menting an authenticated cipher with or without hash functionality, com-
pliant with the LWC Hardware API. The top-level unit is made of four
lower-level units called the PreProcessor, CryptoCore, Header FIFO, and
PostProcessor. Ports with names marked in blue are optional. They in-
clude:

• ports used only by two-pass algorithms, used for communication be-
tween the CryptoCore and the Two-Pass FIFO

• hash and hash_in ports used only by authenticated ciphers with the
hash functionality, and

• the do_last output, facilitating the communication with a potential
follow-up AXI4-Stream Slave.

3.1 PreProcessor
The PreProcessor is responsible for the following tasks

• parsing segment headers

• loading keys

• passing input blocks to the CryptoCore, along with information re-
quired for padding

• keeping track of the number of data bytes left to process.

9

F
IF

O
T

w
o

−
P

a
s
s

din_ready
din_valid

din

dout_ready
dout_valid

dout

s
w

s
d

i_
v
a

lid

s
d

i_
re

a
d

y
s

d
i_

re
a
d

y

s
d

i_
v

a
li
d

s
d

i_
d

a
ta

s
d

i_
d

a
ta

d
o

_
re

a
d

y
d

o
_

re
a

d
y

w

d
o

_
v
a

lid
d

o
_

v
a

li
d

d
o

_
d

a
ta

d
o

_
d

a
ta

d
o

_
la

s
t

d
o

_
la

s
t

fw
fw

4
4

c
c
w

/8

c
c
w

c
c
s
w

c
c
w

/8

c
c
w

/8

c
c
w

w

p
d

i_
v
a

lid

p
d

i_
re

a
d

y
p

d
i_

re
a
d

y

p
d

i_
v
a
li

d

p
d

i_
d

a
ta

p
d

i_
d

a
ta

w
w

c
c
w

/8
+

1

L
W

C

b
d

i

b
d

i_
v
a

lid

b
d

i_
re

a
d

y

C
ry

p
to

C
o

re

fdi_ready
fdi_valid
fdi_data

fdo_valid
fdo_data

fdo_ready

k
e

y

k
e

y
_

v
a

lid

k
e

y
_

re
a

d
y

b
d

i_
ty

p
e

b
d

i_
e

o
t

b
d

i_
e

o
i

b
d

i_
v
a

lid
_

b
y
te

s

b
d

i_
p

a
d

_
lo

c

e
n

d
_

o
f_

b
lo

c
k

b
d

o
_

v
a

lid
_

b
y
te

s

b
d

o
_

ty
p

e

b
d

o
_

v
a

lid

b
d

o
_

re
a

d
y

b
d

o
b

d
i

b
d

i_
re

a
d

y

b
d

i_
v
a

lid

k
e

y
_

v
a

lid

k
e

y
_

re
a

d
y

k
e

y

b
d

i_
ty

p
e

b
d

i_
e

o
t

b
d

i_
e

o
i

b
d

i_
v
a

lid
_

b
y
te

s

b
d

i_
p

a
d

_
lo

c

e
n

d
_

o
f_

b
lo

c
k

b
d

o
_

v
a

lid
_

b
y
te

s

b
d

o
_

ty
p

e

b
d

o
_

re
a

d
y

b
d

o
_

v
a

lid

b
d

o

P
o

s
t

P
ro

c
e
s

s
o

r
P

re

d
in

_
v
a

lid

d
in

_
re

a
d

y

d
in

H
e
a

d
e

r
F

IF
O

d
o

u
t_

v
a

lid

d
o

u
t_

re
a

d
y

d
o

u
t

b
d

i_
s
iz

e

d
e

c
ry

p
t_

in

k
e

y
_

u
p

d
a

te

m
s
g

_
a

u
th

_
re

a
d

y

m
s
g

_
a

u
th

_
v
a

lid

m
s
g

_
a

u
th

c
m

d
_

v
a

lid

c
m

d
_

re
a

d
y

c
m

d

b
d

i_
s
iz

e

d
e

c
ry

p
t

k
e

y
_

u
p

d
a

te

c
m

d
_

v
a

lid

c
m

d
_

re
a

d
y

c
m

d

m
s
g

_
a

u
th

_
re

a
d

y

m
s
g

_
a

u
th

_
v
a

lid

m
s
g

_
a

u
th

h
a

s
h

h
a

s
h

_
in

P
ro

c
e

s
s

o
r

Figure 3.1: Top-level block diagram of the LWC core

10

It is assumed that padding is performed within the CryptoCore, based
on the information provided by the PreProcessor. The signal bdi_type
specifies the type of data on the bdi_data bus. Table 5.2 lists the encoding
for different data types.

3.2 PostProcessor
The PostProcessor is responsible for the following tasks:

• clearing any portions of output words not belonging to the ciphertext
or plaintext (invalid bytes are set to zero)

• generating the header for the output data blocks

• generating the status block with the result of authentication.

3.3 Header FIFO
The Header FIFO is a small 4 x w FIFO that temporarily stores all segment
headers that need to be passed to the output.

11

4 LWC Core Development

4.1 Introduction
The development and benchmarking of a lightweight implementation of a
selected authenticated cipher, with or without hash functionality, can be
performed using the following major steps, described in the subsequent
chapters of this guide:

1. Develop the CryptoCore (Chapter 5)

2. Generate test vectors (Section 6.1)

3. Verify the LWC design using simulation (Section 6.2)

4. Verify the LWC desing using hardware testbeds (Section 6.3.2)

5. Generate optimized results for LWC using FPGA tools (Chapter 7).

4.2 The LWC Configuration
The entity declaration of LWC for lightweight implementations is available
as a part of the Development Package in the file

$root/hardware/LWC_rtl/LWC.vhd

There are two constants (W and SW) that can be changed to configure the
external bus width. The default value for both is 32, as this provides the
most flexibility for designers. The type of reset signal can switch from syn-
chronous active-high(default) to asynchronous active-low to support ASIC
development by setting ASYNC_RSTN to true. These constants should
be set in the corresponding package file

12

$root/hardware/LWC_rtl/NIST_LWAPI_pkg.vhd

It is assumed that all other constants are not changed. Instead, all neces-
sary configurations for the CryptoCore should be performed in the design-
specific package file. For an example see:
$root/hardware/dummy_lwc/src_rtl/v1/design_pkg.vhd

In any case, the cipher specific constants TAG_SIZE, HASH_VALUE_SIZE,
CCSW, CCW, and the derived CCWdiv8 must be set there. They are needed
and read by the LWC. As those constants are cipher specific, they have no
default values, to ensure that the designer explicitly sets them.

Table 4.1 lists all expected parameters for LWC, PreProcessor, and Post-
Processor. Deprecated constants are left for compatibility with the Cipher-
Cores developed during the CAESAR competitions [6]. They should be left
unchanged for any new designs.

Table 4.1: LWC configuration

Name Type Default Definition
Value

Constants (set in design_pkg.vhd)
TAG_SIZE Integer – Size of AEAD-Tag
HASH_VALUE_SIZE Integer – Size of hash value.
CCSW Integer – internal key width (8, 16, 32).
CCW Integer – internal data width (8, 16, 32).
CCWdiv8 Integer – CCW / 8

Constants (set in NIST_LWAPI_pkg.vhd)
W Integer 32 external data width
SW Integer W external key width
ASYNC_RSTN Boolean False Asynchronous active low when true. Syn-

chronous active high when false.
Deprecated constants (set in NIST_LWAPI_pkg.vhd)

TAG_INTERNAL Boolean True Verification must be done by the LWC Core

4.3 I/O Port Widths
Consistently with the specification of the LWC Hardware API the external
I/O port widths (pdi/do and sdi) can be set to 8, 16, and 32 bits in the pack-
age NIST_LWAPI_pkg.vhd, using the constants W and SW. The internal

13

I/O port widths (bdi/bdo and key) are implementation specific an can be
set to 8, 16 or 32 bits in the core configuration package design_pkg.vhd,
using CCW and CCSW.

The following combinations (w, ccw) are supported in the current version
of the Development Package: (32, 32), (32, 16), (32, 8), (16, 16), and (8, 8).
The following combinations (sw, ccsw) are supported: (32, 32), (32, 16),
(32, 8), (16, 16), and (8, 8). However, w and sw must be always the same.

4.4 Limitations
The current implementation of the Pre- and PostProcessor do not support
the following features:

• Ciphertext||Tag segment

• Intermediate tags

• multiple segments of the same type separated by segments of another
type, e.g. header and trailer, treated as two segments of the type AD,
separated by message segments.

• data blocks are never split across two segments as shown in Figs. 4.1,
and 4.2.

Additionally, there is no error handling for protocol errors. However, in
simulation, multiple assertions ensure that the simulation is stopped if an
unexpected header or data type is received.

14

16

Block−1

Block−3

Block−4

Block−2

Segment Header

S
e
g
m

e
n
t−

1
S

e
g
m

e
n
t−

2

Segment Header

Figure 4.1: Correct way of splitting
blocks

Split

Block−1

Segment Header

Block−4

Segment Header

S
e
g
m

e
n
t−

1
S

e
g
m

e
n
t−

2

16

Block−2

Block−3

Block−3 (cont..)

Figure 4.2: Incorrect way of split-
ting blocks

15

5 CryptoCore Development

5.1 Byte Order
All data is assumed to be represented in big endianness.

5.2 Interface
The interface of the CryptoCore is shown in Figure 5.1. Ports marked
in blue are optional and used only if required. This approach allows the
synthesis tool to trim the unused ports and the associated logic from the
design, resulting in a better resource utilization.

Data input ports are limited to key and bdi (block data input). The key
port is controlled using the handshake signals key_valid and key_ready.
key_update is used to notify the CryptoCore that it should update the
internal key prior to processing the next message.

The bdi port is controlled using the bdi_valid and bdi_ready hand-
shake signals.

The correct values of bdi_valid_bytes, bdi_pad_loc and bdi_size for
various numbers of valid bytes within a 4-byte data block are shown in
Table 5.1, where:

• Case A: Either not the last block or the last block with all 4 bytes
valid.

• Case B: The last block with 3 bytes valid.

• Case C: The last block with 1 byte valid.

• Case D: The last block with no valid bytes.

16

.

ccsw

fw fw

fd
i_

re
a
d
y

fd
i_

v
a
lid

fd
i_

d
a
ta

fd
o
_
v
a
lid

fd
o
_
d
a
ta

fd
o
_
re

a
d
y

ccw ccw

4

ccw/8

ccw/8

4

ccw/8

ccw/8+1

key_valid

key_ready

key

Two Pass FIFO Data and Control

bdi

CryptoCore

bdo

bdi_valid

bdi_ready

bdi_type

bdi_eot

bdi_eoi

bdi_valid_bytes

bdi_pad_loc

key_update

end_of_block

bdo_valid_bytes

bdo_type

bdo_valid

bdo_ready

Key Control

BDI Control

BDO Control

Key Input

Data Input Data Output

decrypt_in

hash_in

msg_auth_ready

msg_auth_valid

msg_auth

bdi_size

Tag Verification

Figure 5.1: Interface of the CryptoCore.

The signal bdi_eot indicates that the current BDI block is the last
block of its type. This signal is used only when the type is either AD,
Plaintext, Ciphertext, or Hash Message. The signal bdi_eoi indicates that
the current BDI block is the last block of input other than a block of the
Length segment, a block of the Tag segment, or a block of padding.

The input and output data types are indicated by bdi_type and bdo_type
using the encoding shown in Table. 5.2.

When processing authenticated encryption with associated data (AEAD),
the input decrypt_in informs the core whether the operation is encryption
or decryption. The input hash_in informs the core that a current operation
is a hash, or an encryption/decryption.

It must be noted that all ports of the BDI control group and bdi are

17

Table 5.1: Values of the special control signals bdi_valid_bytes,
bdi_pad_loc, and bdi_size for the bdi bus with a width of 32 bits. Byte
Validity represents the byte locations in bdi that were the part of input
(AD, PT, CT, or hash message) before padding.

Byte/Bit Position 3 2 1 0 3 2 1 0
Case A Case B

Byte Validity
bdi_valid_bytes 1 1 1 1 1 1 1 0
bdi_pad_loc 0 0 0 0 0 0 0 1
bdi_size 1 0 0 0 1 1

Case C Case D
Byte Validity
bdi_valid_bytes 1 0 0 0 0 0 0 0
bdi_pad_loc 0 1 0 0 1 0 0 0
bdi_size 0 0 1 0 0 0

synchronized with the bdi_valid input. Their values should be read only
when the bdi_valid signal is high. The same scenario also applies to the
BDO Control group and bdo, which are synchronized with the value of the
bdo_valid output.

The bdo port is controlled using the bdo_valid and bdo_ready hand-
shake signals. bdo_valid_bytes is the encoding of the byte locations in bdo
that are valid. It is used to clear any unused portion of bdo in the PostPro-
cessor and uses the same convention as bdi_valid_bytes. The encoding is
illustrated in Table 5.1. The end_of_block signal indicates the last word of
an output block. bdo_type is not evaluated by the PostProcessor, however,
for future extensions, it is highly recommended to implement this feature.
There is no penalty in terms of area, as it gets trimmed during synthesis.

The Tag Verification ports (msg_auth_*) are used only during an au-
thenticated decryption operation. The CryptoCore must provide msg_auth
to indicate its result and set msg_auth_valid to high until the PostProces-
sor is ready (msg_auth_ready is active).

The description of all CryptoCore ports are provided in Table 5.3. Ports
related to the bdi control are categorized according to the following criteria:

COMM A handshake signal.

18

Table 5.2: bdi_type and bdo_type Encoding

Encoding Generic Type
0001 HDR_AD Associated Data
0100 HDR_PT Plaintext
0101 HDR_CT Ciphertext
1000 HDR_TAG Tag
1100 HDR_KEY Key
1101 HDR_NPUB Npub
0111 HDR_HASH_MSG Hash message
1001 HDR_HASH_VALUE Hash value

INPUT INFO An auxiliary signal that remains valid until a given input
is fully processed. Deactivation is typically done at the end of input.

SEGMENT INFO An auxiliary signal that remains valid for the current
segment. Its value changes when a new segment is received via the
PDI data bus.

BLOCK INFO An auxiliary signal that is valid for the current input
block. Its value changes when a new block is read.

The description of all ports of the Header FIFO are provided in Ta-
ble 5.4.

5.3 Handshakes
This section presents examples of handshakes. All ports in the figures of
this section are represented by a blue and red color, for input and output
ports, respectively.

The data on the buses is controlled using the handshake signals. The
*_valid signals are set to high if the data on the corresponding bus is valid.
If the module is ready to receive the data, the corresponding *_ready signals
are set to high. These two handshaking signals operate independently.

Fig. 5.2 shows an example of loading a 128-bit key, for sw = 32. The
key_update signal indicates the update of the key. It is decoupled from
key_valid and key_ready and stays high until the key is fully transmitted.

19

Table 5.3: CryptoCore Port Descriptions.

Name Direction Size Description
Data Input & Output

key in ccsw Key data
bdi_data in ccw Block data input
bdo_data out ccw Block data output

Key Control
key_valid in 1 Key data is valid
key_ready out 1 LWC core is ready to receive a new key
key_update in 1 Key must be updated prior to processing a new

input
BDI Control

bdi_valid in 1 [COMM] BDI data is valid
bdi_ready out 1 [COMM] LWC Core is ready to receive data
bdi_pad_loc in ccw/8 [BLOCK INFO] Encoding of the byte location

where padding begins.
bdi_valid_bytes in ccw/8 [BLOCK INFO] Encoding of the byte locations

that are valid.
bdi_size in ccw/8+1 [BLOCK INFO] Number of valid bytes in bdi.
bdi_eot in 1 [BLOCK INFO] The current BDI block is the last

block of its type. Note: Only applies when the
type is either AD, Plaintext, Ciphertext, or Hash
message.

bdi_eoi in 1 [BLOCK INFO] The current BDI block is the last
block of input other than a block of the Tag seg-
ment.

bdi_type in 4 [BLOCK INFO] Type of BDI data. See Table 5.2.
decrypt_in in 1 [INPUT INFO] 0=Encryption, 1=Decryption
hash_in in 1 [INPUT INFO] 0=Encryption/Decryption,

1=Hash
BDO Control

bdo_valid out 1 BDO data is valid
bdo_ready in 1 PostProcessor is ready to receive data.
bdo_valid_bytes in ccw/8 [BLOCK INFO] Encoding of the byte locations

that are valid.
end_of_block out 1 [BLOCK INFO] The current BDO block is the last

block of its type.
bdo_type out 4 [BLOCK INFO] Type of BDO data. See Table 5.2.

TAG Verification
msg_auth out 1 1=Authentication success, 0=Authentication fail-

ure
msg_auth_valid out 1 Authentication output is valid
msg_auth_ready in 1 PostProcessor is ready to accept authentication re-

sult

20

Table 5.4: Header FIFO Port Descriptions.

Name Direction Size Description
PreProcesor & FIFO

din in w Header info
din_valid in 1 data is valid
din_ready out 1 FIFO ready to receive data

PostProcesor & FIFO
dout out w Header info
dout_valid out 1 data is valid
dout_ready in 1 PostProcessor ready to receive data

Figure 5.2: Handshake example of loading a key, for ccsw=32

Figure 5.3: Handshake example of loading Npub, for ccw=32

An example of loading a 128-bit Npub is shown in Fig. 5.3.
Figures 5.4 and 5.5 illustrate examples of loading 120-bit AD and 104-bit

message respectively.
The same applies for hash messages with the exception of the empty hash

message ε. Figure 5.6 shows the handshaking for an empty hash message.

21

Figure 5.4: Handshake example of loading AD, for ccw=32, with data[3]
containing the last 3 bytes of AD

Figure 5.5: Handshake example of loading a message, for ccw=32, with
data[3] containing the last 1 byte for encryption mode

Finally, an example of a handshake for authentication is shown in Fig. 5.7.
For every decryption operation, the PostProcessor will set the msg_auth_ready
signal to indicate its readyness to accept verification result. The result
should be provided by CryptoCore via msg_auth and indicated that it’s
valid by msg_auth_valid.

22

Figure 5.6: Handshake example of an empty message for ccw=32

Figure 5.7: Handshake example for message authentication

5.4 Design Procedure
It is recommended that you start the development of the CryptoCore, spe-
cific to a given authenticated cipher, by using the code provided in the
Development Package, in the folder

$root/hardware/LWC_rtl

In particular, the appropriate connections among the CryptoCore, the
PreProcessor, the PostProcessor, and the HeaderFIFO modules are already
specified in this code. A designer only needs to develop the CryptoCore
Datapath and the CryptoCore Controller. The development of the Cryp-
toCore is left to individual designers and can be performed using their own
preferred design methodology. Typically, when using a traditional RTL
(Register Transfer Level) methodology, the CryptoCore Datapath is first
modeled using a block diagram, and then translated to a hardware de-
scription language (VHDL or Verilog HDL). The CryptoCore Controller is

23

then described using an algorithmic state machine (ASM) chart or a state
diagram, further translated to HDL. An ASM chart of the CryptoCore
Controller typically contains the following states/steps:

1. Idle
2. Load (Process) Key
3. Load (Process) Npub
4. Wait AD
5. Load (Process) AD
6. Load (Process) Data
7. Output Data
8. Process Tag
9. Output/Verify Tag
10. Init Hash
11. Empty Hash
12. Load (Process) Hash Message
13. Output Hash Value

Depending on the implemented cipher some of the wait states might be
omitted and some of the processing states might be extended to multiple
states. An example ASM chart for the CryptoCore Controller is shown
Fig. 5.8. As description in its entirety is too complex; this ASM is only in-
tended to give a brief overview. For a more detailed view, a well commented
dummy core is provided.

Idle After a new instruction or after reset, the Controller should wait for
the first block of data in the Idle state. The CryptoCore should monitor
the bdi_valid and key_valid for the first input.

Key Update If key_valid is high, key_update indicates whether the
current key requires an update. If it does, the controller changes the state
to Load_Key. The key_ready signal should be activated in this state if the
CryptoCore is ready to receive. The deassertion of key_update indicates
that the complete key has been transmitted. Alternatively, if a counter is
already in use by design (e.g. an address counter), it can be used to keep
track of the received words. After a new key is loaded, the CryptoCore
returns to idle.

24

Figure 5.8: A typical Algorithmic State Machine (ASM) chart of the Cryp-
toCore Controller. Each shaded state in this diagram may need to be
replaced by a sequence of states in the actual implementation of a complex
authenticated cipher.

AEAD or Hash If bdi_valid is high, the controller checks if a hash
value generation or an authenticated encryption/decryption takes place,
by inspecting the signal hash_in. An authenticated encryption/decryption
starts with loading the Npub in the Load_Npub state. The calculation of
a hash value starts with the initialization in the Init_Hash state.

25

Npub The bdi_ready signal should be activated in this state if the Cryp-
toCore is ready to receive. Again, either a counter or the signal bdi_eot
can used to determine if all words of Npub have been received.

AD After processing the Npub, the controller moves to Wait_AD to de-
cide whether there are Associated Data at all, and if so further to Load_AD
to load and process the Associated Data.

PT/CT In the Load_Data state, the circuit waits until the input data is
valid (bdi_valid=1), loads the data and then processes it in Load_Data.
Finally the corresponding plaintext or ciphertext is output.

Tag generation In the Process_Tag state, the tag is calculated. Next,
depending on the decrypt_in signal either the tag is output in the state
Output_Tag, or the calculated tag is compared against the received tag in
Verify_Tag state.

Hash The calculation of a hash value is similar: Depending on the ci-
pher, the internal state is initialized. If the hash value of the empty string ε
(bdi_valid=1 and bdi_size=0) is calculated, a single acknowledgment
(bdi_ready=1 in the state Empty_Hash) is needed. For an non empty in-
put, the input data is loaded and processed in the state Load_hash. Finally,
the hash value is output in the state Output_hash_value. This state can be
combined with the state Output_Tag if both outputs share the same size.

Shortcuts and Extensions Depending on the algorithm, additional pro-
cessing may be required for the last block of data. This block can be de-
termined using the end-of-type input (bdi_eot). This signal is also used to
move to the processing of the next data type. The bdi_eoi indicates, that
no further input is expected. In this case A○ the controller can progress to
the Process_Tag state directly.

5.5 Dummy Authenticated Cipher
An example design of the ligtweight CryptoCore, corresponding to a dummy
authenticated cipher, dummy_lw, is provided as a part of our distribution.

26

This example is aimed at presenting the behavior of the Pre- and Post-
processors for a typical CryptoCore. The dummy authenticated cipher is
specified using the following equations:

AD = AD1, AD2, ..., ADn−1, ADn (5.1)

PT = PT1, PT2, ..., PTm−1, PTm (5.2)

CT = CT1, CT2, ..., CTm−1, CTm (5.3)

CTi = PTi ⊕ i⊕Key ⊕Npub (5.4a)
PTi = CTi ⊕ i⊕Key ⊕Npub (5.4b)

for i = 1..m− 1.

CTm = Trunc(PTm ⊕ i⊕Key ⊕Npub, PTm) (5.5a)
PTm = Trunc(CTm ⊕ i⊕Key ⊕Npub, CTm) (5.5b)

Tag = Key⊕Npub⊕Len⊕
n−1⊕
i=1

ADi ⊕ Pad(ADn)⊕
m−1⊕
i=1

PTi ⊕ Pad(PTm)

(5.6)
where,

• PTi and CTi are the plaintext and ciphertext blocks, respectively,

• ADi are the associated data blocks,

• ADblock_size = PTblock_size = CTblock_size = 128 bits

• Pad(·) represents a 10∗ padding operation applied to the last AD
and/or the last plaintext block,

• Pad(ADn) = ADn if len(ADn) = block_size else ADn||10∗

• Pad(PTm) = PTm if len(PTm) = block_size else PTm||10∗

27

• Trunc(X, Y) truncates X to the size of Y,

• i is the 128-bit block number,

• Key is a 128-bit key,

• Npub is the 96 bit Public message number (nonce),

• Len = 64-bit associated data length (in bits) || 64-bit plaintext length
(in bits).

For an XOR operation with inputs of different sizes, the smaller operands
are appended with zeros to have the same length as the longest operand.
The result has the length of the longest operand.

The design of the controller used in our dummy cores is based on the
ASM chart discussed in the previous section.

The code of the Cipher Core is developed to work correctly with ccw=ccsw=8,
16, and 32.

5.6 Dummy Hash
An example design of the lightweight hash function, corresponding to a
dummy hash implementation, dummy_lw, is provided as a part of our
distribution.

HASH_V ALUE =
m−1⊕
i=1

HASH_MSGi ⊕ Pad(HASH_MSGm) (5.7)

The following parameters are used:

• HASH_MSGblock_size = 256 bits

• Pad(HASH_MSGn) = HASH_MSGn if len(HASH_MSGn) =
block_size else HASH_MSGn||10∗

• The empty string ε has HASH_V ALUE = 0.

The code of the CryptoCore is developed to work correctly with ccw=ccsw=8,
16, and 32.

28

6 Verification

6.1 Test vector generation (cryptotvgen)
The Python script called cryptotvgen and accompanying examples provide
a framework to generate test vectors for any authenticated cipher based on
the user’s specified parameters. The script is located in the folder

$root/software/cryptotvgen/cryptotvgen
and the examples of calling it with parameters specific to multiple authen-
ticated ciphers in the folder

$root/software/cryptotvgen/examples

The framework relies on the reference implementations of authenticated
ciphers and hash function (including, but not limited to NIST LWC candi-
dates), which can be placed in the following folders.

$root/software/dummy_lwc_ref/crypto_aead
$root/software/dummy_lwc_ref/crypto_hash

6.1.1 Setup

In order to run cryptotvgen, you need to have the following installed in your
system:

• gcc

• Python v3.6+

The below instructions describe how to install and configure these pack-
ages from scratch.

29

Linux
The following instructions assume the use of Ubuntu v18.04 or above for
Linux. The latest version of MSYS2 is assumed for Windows.
Install required tools
sudo apt install gcc python3 python3-pip;
pip3 install request;

For MSYS2 user, python3-cffi package may not be available
so the following instruction can be referred as a workaround.
pacboy -S libcrypt-devel
pacboy -S libffi-devel
CFLAGS=-I/usr/lib/libffi-3.2.1/include pip install cffi

Install wheel
python3 -m pip install -e $root/software/cryptotvgen/.

Test that the program has been installed
by calling help
cryptotvgen -h

Uninstalling cryptotvgen
python3 -m pip uninstall cryptotvgen

6.1.2 Compiling shared libraries

The following instruction provides a step-by-step guide into preparing a shared
library for use with cryptotvgen using prepare_src utility. The instruction
assumes that all build environment is setup correctly.

Downloads SUPERCOP and make LWC candidates.
Downloaded files and built shared libraries are located at ~/.cryptotvgen
cryptotvgen --prepare_libs

If SUPERCOP is already downloaded. candidate_dir can be the location of SUPERCOP
or any other

directory that contains crypto_aead or crypto_hash format.
cryptotvgen --prepare_libs <algorithm_name> --candidates_dir=/path

Example
cryptotvgen --prepare_libs dummy --candidates_dir=$root/software/dummy_lwc_ref

6.1.3 Adding a new library

A new software library, corresponding to a new authenticated cipher, can be
added to our framework as long as it follows SUPERCOP software API. The
user simply needs to place the code using the same structure as SUPERCOP

30

(<algorithm_class>/<algorithm_name>/<implementation_name>). Then,
follow instructions provided in Section 6.1.2.

6.1.4 Generating test vectors

It is recommended that the user understands the arguments of cryptotvgen,
in order to properly create test vectors for the design under verification.
The arguments to be used are the function of

• algorithm

• parameters of the algorithm (e.g., key size, block size)

• phase of verification.

As a result, basic knowledge of the target design, including the parame-
ters of the algorithm and implementation, are required. While it is possible
to generate test vectors using pure shell command syntax, this process is
likely to be error prone due to the large number of available options. In-
stead, we recommend that the user create a Python script that utilizes
cryptotvgen as a third party library in Python and then calls it using cryp-
totvgen(args).

Various examples of such Python scripts can be found in
$root/software/cryptotvgen/examples

An example of generating a set of test vectors for dummy_lw is shown
below:
Generate test vectors for dummy_lw
cd $root/software/cryptotvgen/examples

Create test vectors for dummylw
python3 dummy_lw.py

The user is encouraged to use the files
$root/software/cryptotvgen/examples/dummy_lwc_*.py

as templates and a starting point to create the customized script for the
targeted design.

The provided template contains a list of possible options for the majority
of use cases. It must be noted, however, that the user must take into account
the specific characteristics of the algorithm and design when generating

31

these test vectors. Providing as much coverage as possible ensures that the
design can withstand a real-world usage.

In particular, a typical process of verifying the functionality of an au-
thenticated cipher module includes the following phases, devoted to the
verification of:

1. Single AD and Message/Ciphertext Block

2. Random Inputs with Custom Selected Sizes

3. Empty Message, Empty AD, Basic Message/ID Sizes

4. Randomly Generated Test Vectors with Varying AD, Message, and
Ciphertext Lengths.

Test vectors for these phases can be generated using the cryptotvgen
options:

1. --gen_single

2. --gen_custom

3. --gen_hash

4. --gen_test_routine

5. --gen_test_combined

6. --gen_random

7. --gen_benchmark

respectively, as illustrated in gimli24v1.py.
The choice of one of these phases can be accomplished simply by un-

commenting the respective line of the script, e.g.,
PHASE 3:

args = basic_args + gen_test_routine

Please note that only for the --gen_single option, the knowledge of the
key, Npub, Nsec, AD, and Data sizes is required to generate test vectors. For
all other cases, these sizes are inferred from the values of basic arguments
(basic_args), such as --io, --key_size, --block_size, etc., which need to be
specified only once.

32

After the analysis using these most commonly used sets of option, the
designer has the flexibility of generating his own verification strategy, based
on the detailed knowledge and understanding of options of cryptotvgen.
This additional verification may be necessary to cover the full functional-
ity offered by the specific algorithm, especially in case of encrypting and
decrypting multiple inputs of various sizes and internal compositions.

6.2 Hardware Simulation
Once test vectors are generated, copy them into your simulation folder or
update generic properties in LWC_TB.vhd to their paths appropriately.

Table 6.1: LWC_TB.vhd Generics

Value Description
G_MAX_FAILURES Max test vector failures before

halting simulation
G_TEST_MODE See the Test modes tables
G_TEST_IPSTALL Controls when PDI stalls in

TEST_MODE 1 & 2
G_TEST_ISSTALL Controls when SDI stalls in

TEST_MODE 1 & 2
G_TEST_OSSTALL Controls when DO stalls in

TEST_MODE 1 & 2
G_LOG2_FIFODEPTH Controls the FIFO Depth of for

FPDI, FSDI, and FDO
G_PERIOD Clock period during simulation
G_FNAME_PDI Path to the PDI test vectors
G_FNAME_SDI Path to the SDI test vectors
G_FNAME_DO Path to the DO test vectors
G_FNAME_LOG Output log file destination path
G_FNAME_TIMING Log file when in TEST_MODE 4
G_FNAME_TIMING_CSV CSV log file when in TEST_MODE 4
G_FNAME_FAILED_TVS Log of test vectors that failed
G_FNAME_RESULT Contains status of simulation run

Simulation is performed until the end-of-file is reached or the G_MAX_FAILURES

33

threshold is hit by mismatches between expected and actual output. A clock
signal is deactivated when either of these two conditions is met.

Finally, in the practical experimental testing of any module, there is no
guarantee that the input source will be ready with the new input whenever
the module attempts to read it. Similarly, the destination circuit may
not be always ready to receive the new output. These conditions must be
comprehensively verified using simulation, before the experimental testing
is attempted.

In our testbench, these conditions can be accomplished using the fea-
tures of stalling input and stalling output. The rate at which the data
is stalled can be configured using TEST_IPSTALL (public input stall),
TEST_IPSTALL (secret input stall) and TEST_OSTALL (output stall),
expressed in clock cycles.

TEST_MODE 4 was added in release v1.1.0 to support Measurement
Mode. This mode is intended to aid designers with the verification of for-
mulas for execution time. In this mode results are logged into a text file
and csv file. The path of these files can be set by G_FNAME_TIMING
and G_FNAME_TIMING_CSV

These settings will only become active if TEST_MODE is set to the
value shown in Table 6.2.

Table 6.2: Test modes

Value Description
0 No stall
1 Input & Output stall test
2 Input only stall test
3 Output only stall test
4 Measurement Mode

Finally, it must be stressed that the aforementioned verification is paramount
to ensuring that the design can withstand a real-world usage, where the in-
termittent data transmission is very common. At the very least, the user
should ensure that the design under verification is successfully validated
when TEST_MODE is set to 1.

34

6.3 Hardware Testing

6.3.1 UART based Framework

An universal UART wrapper can be found at [7]. It contains a python
script to parse the generated pdi.txt, sdi.txt, and do.txt, and send
them to a UART. A VHDL module handles the UART communication and
provides the pdi, sdi, and do ports. Figure 6.1 shows an example block
diagram. This framework focuses on functional verification.

CryptoCore

HeaderFiFo

Figure 6.1: Example block diagram for functional verification.

6.3.2 Pynq based Frameworks

The framework from [8] and its extended version from [9] comprise an open
source, simple plug and play framework which enables testing of implemen-
tations of cryptographic algorithms on a physical System on Chip (SoC)
hardware, namely the PYNQ-Z1 board. It is compatible with the CAE-
SAR Hardware API and also with the LWC API. In addition to functional
verification, the framework measures the run time, power and energy con-
sumption, and allows for verification of the maximum clock frequency on
real hardware.

The Processing System (PS) of Zynq SoC runs cryptotvgen to generate
test vectors. They are then send to the Programmable Logic (PL) and the

35

results back read back, with the use of the Xilinx Direct Memory Access
(DMA) to AXI4-Stream (AXIS) controllers. Run time of the core itself
and including the overhead required to send data to and from the LWC
core through DMA is measured through two hardware timers. It uses the
XXBX Power Shim [10] and the Xilinx XADC of the SoC to measure power
consumption. It supports on-chip power measurements and determining the
maximum clock frequency using experimental testing.

This framework has been used successfully to locate errors in the HDL
code of CAESAR candidates [8,9], preventing the corresponding implemen-
tations from running properly on the board. Even though the generation
of primary timing and resource utilization results does not require experi-
mental testing, the detected errors and the follow-up changes in the code
may have influence on the final results. Additionally, experimental measure-
ments of power consumption and maximum clock frequency can be used to
verify the accuracy of the respective FPGA tools, and verifying the validity
of assumptions used by these tools.

AXI−Int

AXI−Int

AXI−Int

AXI−Int

DMA

DMA

DMA FIFO

FIFO

FIFO

en

clk Wiz

en

Timer 0 Timer 1

clk Wiz
XADC

PowerSleep

S_AXI

S_AXI

S_AXI

M_AXI

GPIO

PS

SDI

PDO

PDI

Bus Clock Core Clock

Core
AEAD

100 − 200 MHz

Wakeup

Vcc

Vcc

100 MHz

125 MHz

100 MHz100 MHz

Measurement Clock

Figure 6.2: Block diagram for power and performance evaluation.

6.3.3 Side-Channel Analysis Framework

The Flexible, Opensource workBench fOr Side-channel analysis (FOBOS)
is designed to be an inexpensive side channel analysis setup that includes

36

a complete software package with programs for data acquisition and data
analysis. In order to evaluate side-channel leakage of hardware platforms,
FOBOS uses off-the shelf FPGA boards as control and device under test
(DUT). Starting with version 2, to be released in Fall 2019, it supports the
LWC API. Figure 6.3 shows the block diagram of FOBOS 2. The control
board is a Basys3, which communicates with the PC via USB serial, sends
test vectors to the DUT, provides the clock for the DUT and a trigger for
the oscilloscope. FOBOS provides a wrapper for the “Function Core” to
enable users to simply plug in their LWC core as shown in Fig. 3.1.

FIFO

clk Wiz

Acquisition Analysis

DUT Clock

s p r

Device Under Test (DUT)

o

Control

AXI−Int

BUS Clock

AXI

Results Data/Commands

PC

Timeout

Reset

Trigger

SDI PDI RDI

Core

Function

DOUSB

Measuring
Circuit

DUT Control

DUT Comms

Microblaze
Softcore

Oscilloscope

Figure 6.3: FOBOS 2 Block diagram.

Figure 6.4 shows a typical FOBOS 2 setup consisting of a Basys3 board
as control, a CW305 Artix FPGA Target Board as DUT and a Picoscope
for collecting the measurements.

37

Figure 6.4: Typical FOBOS 2 setup.

38

7 Generation and Publication of
Results

Generation of results is possible for the LWC core and the CryptoCore. We
recommend generating results primarily for the LWC cores. Benchmarking
and reporting results for FPGAs should be performed using the most-recent
low-cost families of FPGA devices from at least two major vendors, Intel and
Xilinx. For Intel, such families include: Cyclone V and Cyclone 10 FPGAs
and Cyclone V SoC FPGAs; for Xilinx: Artix-7 and Spartan-7 FPGAs,
and Zynq-7000 All Programmable SoCs. The most recent versions of tools
from the respective vendors should be used. Only final results obtained
after placing and routing should be reported. In terms of optimization
of tool options, for Xilinx FPGAs and SoCs, we recommend generating
results using Minerva [11]. In case of ASICs, state-of-the-art libraries of
standard cells should be used. Comprehensive results, generated after the
respective submission deadlines for the HDL code, are expected to be made
publicly available in the ATHENa Database of Results for Authenticated
Ciphers [12] or an equivalent or extended database of results, focused on
LWC candidates.

39

8 Differences Compared to the
CAESAR Hardware API
Development Package

Major differences between the proposed Development Package for Hard-
ware Implementations Compliant with the Hardware API for Lightweight
Cryptography and the Development Package for Hardware Implementations
Compliant with the CAESAR Hardware API, defined in [5], are as follows:

8.1 Functionality

8.1.1 API

In terms of the Minimum Compliance Criteria: a) One additional configu-
ration, encryption/decryption/hashing, has been added on top of the pre-
viously supported configuration: encryption/decryption. b) On top of the
maximum sizes of AD/plaintext/ciphertext already supported in the CAE-
SAR Hardware API, two additional maximum sizes, 216 − 1 and 250 − 1,
have been added.
In terms of the Interface: An additional optional output, do_last, has been
added to the Data Output ports.
In terms of the Communication Protocol: a) In the Instruction/Status, an
additional opcode value, representing hash function, has been added. b) In
the Segment Header word, two additional Segment Type values, represent-
ing Hash Message and Hash Value, have been added.

40

8.1.2 Support for Hashing

Hashing is fully supported. The PreProcessor has a new output signal hash
to indicate, that the CryptoCore should execute a hash instruction. Corre-
spondingly, there is a new type encoding "0111" for bdi_type to indicate,
that the bdi contains data to be hashed. An empty hash is indicated by
bdi_valid set to "1" and bdi_size set to zero. The PreProcessor expects
an acknowledgment read. The CryptoCore must set bdi_ready to "1" for
one cycle. The cryptotvgen also supports the generation of hash test vec-
tors.

8.1.3 Deprecated Features

The following features are not supported:

• Tag comparison in PostProcessor.

8.1.4 Added Features

• Features added in version 1.1.0

– Enhanced compatibility with VHDL Standards IEEE 1076-1993,
IEEE 1076-2002, and IEEE 1076-2008.

– Improved cryptotvgen for easier install and use. See README.md.
– Fixed incorrect EOI flag when a hash message is empty
– Timing test mode in LWB_TB.vhd enabled by setting G_TEST_MODE=4.

This test mode reports cycles required for given message sizes
outputting this data into a log and csv file specified by G_FNAME_TIMING
and G_FNAME_TIMING_CSV respectively.

• Prior feature differences compared to the CAESAR Hardware API:

– Support different (w, ccw) and (sw, ccsw) combinations. The
following new combinations are supported: (32, 32), (32, 16),
and (32, 8). They can be used independently for w and sw.

– The PostProcessor sets unused bytes in bdo to zero.
– Multiple input and output segments for Ciphertext, Plaintext,

and Hash Message are supported for lightweight implementa-
tions.

41

8.2 Internal Structure
The VHDL code of the PreProcessor and Postprocessor had a major code
review to improve functionality, readability and code coverage. The top-
level module AEAD was renamed to LWC. The module CipherCore was
renamed to CryptoCore.

8.2.1 Configuration

The configuration was reordered: The CryptoCore (including the widths
of the interface to the PreProcessor and PostProcessor) is configured in
design_pkg.vhd. The NIST_LWAPI_pkg.vhd contains all constants
and functions for the PreProcessor and PostProcessor. Additionally the
widths of pdi, sdi and do are configured here.

The generics G_W and G_SW in LWC are replaced by the constants
W and SW. The configuration parameters PW and SW are replaced by
CCW and CCSW.

8.3 Implementer’s Guide
The Implementer’s Guide was rewritten to reflect the changes. Additionally,
some minor issues were fixed or clarified.

42

Appendix A: cryptotvgen help

cryptotvgen -h
usage: cryptotvgen [--candidates_dir <PATH/TO/CANDIDATES/SOURCE/DIRECTORY>]

[--lib_path <PATH/TO/LIBRARY/DIRECTORY>]
[--aead <ALGORITHM_VARIANT_NAME>]
[--hash <ALGORITHM_VARIANT_NAME>] [--gen_random N]
[--prepare_libs [<variant_prefix> [<variant_prefix> ...]]]
[--supercop_version SUPERCOP_VERSION] [--gen_benchmark]
[--gen_custom_mode MODE] [--gen_custom Array]
[--gen_hash BEGIN END MODE]
[--gen_test_combined BEGIN END MODE]
[--gen_test_routine BEGIN END MODE]
[--gen_single MODE KEY NPUB NSEC AD PT] [-h] [--verify_lib]
[-V] [-v] [--io PUBLIC_PORTS_WIDTH SECRET_PORT_WIDTH]
[--key_size BITS] [--npub_size BITS] [--nsec_size BITS]
[--tag_size BITS] [--message_digest_size BITS]
[--block_size BITS] [--block_size_ad BITS]
[--block_size_msg_digest BLOCK_SIZE_MSG_DIGEST]
[--ciph_exp] [--ciph_exp_noext] [--add_partial]
[--msg_format SEGMENT_TYPE [SEGMENT_TYPE ...]] [--offline]
[--min_ad BYTES] [--max_ad BYTES] [--min_d BYTES]
[--max_d BYTES] [--max_block_per_sgmt COUNT]
[--max_io_per_line COUNT] [--pdi_file FILENAME]
[--sdi_file FILENAME] [--do_file FILENAME]
[--dest PATH_TO_DEST] [--human_readable] [--cc_hls]
[--cc_pad_enable] [--cc_pad_ad PAD_AD_MODE]
[--cc_pad_d PAD_D_MODE] [--cc_pad_style PAD_STYLE]

Test vectors generator for NIST Lightweight Cryptography candidates.

:::::Path specifiers::::
Not required if using ‘--prepare_libs‘ in automatic mode (see below and README)

--candidates_dir <PATH/TO/CANDIDATES/SOURCE/DIRECTORY>
Relative or absolute path to the top _directory_ where the ‘

crypto_aead ‘crypto_hash‘ folders candidates directory,
Source directory structure in this folder must follow

SUPERCOP directory structure.
(default: None, which will use $HOME/.cryptotvgen)

--lib_path <PATH/TO/LIBRARY/DIRECTORY>
Relative or absolute path to the top _directory_ where ‘

crypto_aead‘ and ‘crypto_hash‘ folders with the dynamic shared libraries (*.so

43

or *.dll) reside.
e.g. ‘../software/dummy_lwc_ref/lib‘
(default: None, which means if candidates_dir option is

specified will use ‘candidates_dir‘/lib
and if neither candidates_dir nor lib_path are

specified will use $HOME/.cryptotvgen/lib)

:::::At least one of these parameters are required::::
Library name specifier::

--aead <ALGORITHM_VARIANT_NAME>
Name of a the variant of an AEAD algorithm for which to

generate test-vectors, e.g. gimli24v1
Note: The library should have been be generated previously

by running in ‘--prepare_libs‘. (default: None)
--hash <ALGORITHM_VARIANT_NAME>

Name of a the variant of a hash algorithm for which to
generate test-vectors, e.g. asconxofv12

Note: The library should have been be generated previously
by running in ‘--prepare_libs‘. (default: None)

:::::Test Generation Parameters::::
Test vectors generation modes (use at least one from the list
below)::
Common notation and convetions:
AD - Associated Data
DATA - Plaintext/Message or Ciphertext
PT - Plaintext/Message
CT - Ciphertext
HASH - Message to be hashed
HASH_TAG - Message Digest
(*)_LEN - Length of data (*) type, i.e. AD_LEN.
Operation - 0: encryption, 1: decryption
H* - a string composed of multiple repetitions of the hexadecimal

digit H (the number of repetitions is determined by the size
of a given argument)
All lengths are expressed in bytes.

For Boolean arguments, 0 can be used instead of False,
and 1 can be used instead of True.

--gen_random N Randomly generates N test vectors with
varying AD_LEN, PT_LEN, and operation (For use only with

AEAD) (default: 0)
--prepare_libs [<variant_prefix> [<variant_prefix> ...]]

Build dynamically shared libraries required for testvector
generation.

If one or more <variant_prefix> arguments are given, only
build variants

whose name starts with either of these prefixes, otherwise
will build

all libraries.
e.g. ‘--prepare_libs ascon‘ will only build all AEAD and

hash variants

44

of "ascon*"

Automatic mode: If no ‘--candidates_dir‘ option is present
it will

download and extract reference
implementations from SUPERCOP.

Subfolder mode: If ‘--candidates_dir‘ is specified, only
build

libraries found in sources directories of ‘
candidates_dir‘

(uses SUPERCOP directory structure)
(default: None) See also ‘--supercop_version‘

--supercop_version SUPERCOP_VERSION
’SUPERCOP version to download and use.
Either use specific version with ‘YYYYMMDD‘ format or use ‘

latest‘
to automatically determine the latest available version from

the SUPERCOP website. (default: latest)
--gen_benchmark This mode generates several the following sets of test

vectors
1) generic_aead_sizes_new_key: encryption and decryption of

the following sizes
using a new key every time. Also

generic_aead_sizes_reuse_key.
Format: (ad,PT/CT)
(5*--block_size_ad//8,0), (4*--block_size_ad//8,0),

(1536,0), (64,0), (16,0)
(0,5*--block_size//8), (0,4*--block_size//8), (0,1536),

(64,0), (0,16)
(5*--block_size_ad//8,5*--block_size), (4*--

block_size_ad//8,4*--block_size),
(1536,1536), (64,64), (16,16)

2) basic_hash_sizes: (0, 16, 64, 1536, 4*--
block_size_msg_digest//8,

5*--block_size_msg_digest//8)
3) kats_for_verification: for i in range 0 to (2*--

block_size_ad//8)-1
for x in range 0 to 2*--

block_size//8)-1
tests += (i,x)

Encryption only
4) blanket_hash_test: 0 to (4*--block_size_msg_digest//8) -1
5) pow_*: Several sets of test vectors that are only one

message for
for each combination of possible values for basic

sizes

Additional arguments to provide --aead, --block_size, and --
block_size_ad.

Optional arguments --hash and --block_size_msg_digest allow
for the generation

of the hash test vectors
(default: False)

45

--gen_custom_mode MODE
The mode of test vector generation used by the --gen_custom

option.

Meaning of MODE values:
0 = All random data
1 = Fixed test values.

Key=0xFF*, Npub=0x55*, Nsec=0xDD*,
AD=0xA0*, PT=0xC0*, HASH=0xFF*

2 = Same as option 1, except an input is now a running
value (each subsequent byte is a previous byte
incremented by 1).

(default: 0)
--gen_custom Array Randomly generate multiple test vectors, with each test

vector
specified using the following fields:

NEW_KEY (Boolean), DECRYPT (Boolean), AD_LEN, PT_LEN or
HASH_LEN, HASH (Boolean)
":" is used as a separator between two consecutive test
vectors.

Example:
--gen_custom True,False,0,20,False:0,0,0,24,True

Generates 2 test vectors. The first vector will
create a new key and perform an encryption with a dataset

that
has AD_LEN and PT_LEN of 0 and 20 bytes, respectively. The
second vector performs a HASH on a message with HASH_LEN of

24
bytes. (default: None)

--gen_hash BEGIN END MODE
This mode generates 20 test vectors for HASH only.
The test vectors are specified using the following array:

[NEW_KEY (boolean), # Ignored due to hash operation
DECRYPT (boolean), # Ignored due to hash operation
AD_LEN, # Ignored due to hash operation
PT_LEN,
HASH (boolean)]:

The following parameters are used:
[False , False, 0, 0 , True],
[False , False, 0, 1 , True],
[False, False, 0, 2 , True],
[False , False, 0, 3 , True],
[False, False, 0, 4 , True],
[False , False, 0, 5 , True],
[False, False, 0, 6 , True],
[False , False, 0, 7 , True],
[False, False, 0, bsd-2 , True],
[False , False, 0, bsd-1 , True],
[False, False, 0, bsd , True],
[False , False, 0, bsd+1 , True],
[False, False, 0, bsd+2 , True],
[False , False, 0, bsd*2 , True],

46

[False, False, 0, bsd*2+1 , True],
[False , False, 0, bsd*3 , True],
[False, False, 0, bsd*3+1 , True],
[False , False, 0, bsd*4 , True],
[False, False, 0, bsd*4+1 , True],
[False , False, 0, bsd*5 , True],
[False, False, 0, bsd*5+1 , True]]

where,
bsa is the associated data block size (block_size_ad = 0

for
hash), and
bsd is the data block size (block_size = # of bytes of
message to hash).

Note that sdi.txt will have a header, but no generated keys.
Also, key_id = 0 for all hash test vectors.

BEGIN (min=1,max=22) determines the starting test number.
END (min=1,max=22) determines the ending test number.
MODE determines the test vector generation mode, where

0 = All random data
1 = Fixed test values.

HASH=0xF0*
2 = Same as option 1, except each input is now a running

value (each subsequent byte is a previous byte
incremented by 1).

Example:

--gen_hash 1 20 0

Generates tests 1 to 20 with MODE=0.

--gen_hash 5 5 1

Generates test 5 with MODE=1. (default: None)
--gen_test_combined BEGIN END MODE

This mode generates 33 test vectors for the common sizes of
AD and

PT that the hardware designer should, at a minimum, verify.
It also

combines AEAD and hash test vectors into one set of test
vectors, which are interleaved as encrypt, decrypt, and hash

.
The test vectors are specified using the following array:

[NEW_KEY (boolean),
DECRYPT (boolean),
AD_LEN,
PT_LEN,
HASH (boolean)]:

The following parameters are used:
[True , False, 0, 0 , False],

47

[False, True, 0, 0 , False],
[False, True, 0, 0 , True],
[True , False, 1, 0 , False],
[False, True, 1, 0 , False],
[False, True, 0, 1 , True],
[True , False, 0, 1 , False],
[False, True, 0, 1 , False],
[False, True, 0, 2 , True],
[True , False, 1, 1 , False],
[False, True, 1, 1 , False],
[False, True, 0, 3 , True],
[True , False, 2, 2 , False],
[False, True, 2, 2 , False],
[False, True, 0, 4 , True],
[True , False, bsa-1, bsd-1 , False],
[False, True, bsa-1, bsd-1 , False],
[False, True, 0, bsd-1 , True],
[True , False, bsa, bsd , False],
[False, True, bsa, bsd , False],
[False, True, 0, bsd+1 , True],
[True , False, bsa+1, bsd+1 , False],
[False, True, bsa+1, bsd+1 , False],
[False, True, 0, bsd+2 , True],
[True , False, bsa*2, bsd*2 , False],
[False, True, bsa*2, bsd*2 , False],
[False, True, 0, bsd*2 , True],
[True , False, bsa*2+1, bsd*2+1 , False],
[False, True, bsa*2+1, bsd*2+1 , False],
[False, True, 0, bsd*2+1 , True],
[True , False, bsa*3, bsd*3 , False],
[False, True, bsa*3, bsd*3 , False],
[False, True, 0 , bsd*3 , True]]

where,
bsa is the associated data block size (block_size_ad),

and
bsd is the data block size (block_size).

Note: key_id = 0 for all hash test vectors.

BEGIN (min=1,max=33) determines the starting test number.
END (min=1,max=33) determines the ending test number.
MODE determines the test vector generation mode, where

0 = All random data
1 = Fixed test values.

Key=0xF*, Npub=0x5*, Nsec=0xD*,
Ad=0xA0*, PT=0xC0*, HASH=0xF*

2 = Same as option 1, except each input is now a running
value (each subsequent byte is a previous byte
incremented by 1).

Example:

--gen_test_combined 1 20 0

48

Generates tests 1 to 20 with MODE=0.

--gen_test_combined 5 5 1

Generates test 5 with MODE=1. (default: None)
--gen_test_routine BEGIN END MODE

This mode generates test vectors for the common sizes of AD
and

PT that the hardware designer should, at a minimum, verify.
Only AEAD test vectors are generated, hashes are not

generated.
The test vectors are specified using the following array:

[NEW_KEY (boolean),
DECRYPT (boolean),
AD_LEN,
PT_LEN,
HASH (boolean)]:

The following parameters are used:
[True , False, 0, 0 , False],
[False, True, 0, 0 , False],
[True , False, 1, 0 , False],
[False, True, 1, 0 , False],
[True , False, 0, 1 , False],
[False, True, 0, 1 , False],
[True , False, 1, 1 , False],
[False, True, 1, 1 , False],
[True , False, bsa, bsd , False],
[False, True, bsa, bsd , False],
[True , False, bsa-1, bsd-1 , False],
[False, True, bsa-1, bsd-1 , False],
[True , False, bsa+1, bsd+1 , False],
[False, True, bsa+1, bsd+1 , False],
[True , False, bsa*2, bsd*2 , False],
[False, True, bsa*2, bsd*2 , False],
[True , False, bsa*3, bsd*3 , False],
[False, True, bsa*3, bsd*3 , False],
[True , False, bsa*4, bsd*4 , False],
[False, True, bsa*4, bsd*4 , False],
[True , False, bsa*5, bsd*5 , False],
[False, True, bsa*5, bsd*5 , False]

where,
bsa is the associated data block size (block_size_ad),

and
bsd is the data block size (block_size).

BEGIN (min=1,max=22) determines the starting test number.
END (min=1,max=22) determines the ending test number.
MODE determines the test vector generation mode, where

0 = All random data
1 = Fixed test values.

Key=0xF*, Npub=0x5*, Nsec=0xD*,
Ad=0xA0*, PT=0xC0*

49

2 = Same as option 1, except each input is now a running
value (each subsequent byte is a previous byte
incremented by 1).

Example:

--gen_test_routine 1 20 0

Generates tests 1 to 20 with MODE=0.

--gen_test_routine 5 5 1

Generates test 5 with MODE=1.
(default: None)

--gen_single MODE KEY NPUB NSEC AD PT
Generate a single test vector based on the provided values

of
all inputs expressed in the hexadecimal notation. (For use

only
with AEAD)

Example:
--gen_single 0 5555 0123456 789ABCD 010204 08090A #Encrypt
--gen_single 2 0 0 0 0 1212121 #Hash

Note:
KEY, NPUB and NSEC must have size equal to the expected
value. Exception: NSEC is ignored --nsec_size is set to 0.
All arguments must contain an even number of hexadecimal
digits, e.g., 00 is valid; 0 is invalid.

IS_DECRYPT, KEY, NPUB, NSEC, AD parameters are ignored in
HASH mode.

(default: None)

:::::Optional Parameters:::::
Debugging options::

-h, --help Show this help message and exit.
--verify_lib This operation will verify the generated test vectors

via the decryption operation.

Note: This option provides an additional check against
possible

mismatch of results between encryption and decryption
in the reference software.

(default: False)
-V, --version show program’s version number and exit
-v, --verbose Verbose for script debugging purposes. (default: False)

:
Algorithm and implementation specific options::

--io PUBLIC_PORTS_WIDTH SECRET_PORT_WIDTH

50

Size of PDI/DO and SDI port in bits. (default: (32, 32))
--key_size BITS Size of key in bits (default: 128)
--npub_size BITS Size of public message number in bits (default: 128)
--nsec_size BITS Size of secret message number in bits (default: 0)
--tag_size BITS Size of authentication tag in bits (default: 128)
--message_digest_size BITS

Size of message digest (hash_tag) in bits (default: 64)
--block_size BITS Algorithm’s data block size (default: 128)
--block_size_ad BITS Algorithm’s associated data block size.

This parameter is assumed to be equal to block_size
if unspecified. (default: None)

--block_size_msg_digest BLOCK_SIZE_MSG_DIGEST
Algorithm’s hash data block size (default: None)

--ciph_exp Ciphertext expansion algorithm. When this option is set, the
last

block will have its own segment. This is required for a
correct

operation of the accompanied PostProcessor.

Currently, we assume that PAD_AD and PAD_D are both set to 4
when this mode is used.
(default: False)

--ciph_exp_noext [requires --ciph_exp]

Additional option for the ciphertext expansion mode. This
option

indicates that the algorithm does not expand the ciphertext
(i.e., does not make the ciphertext size greater than the

message
size) if the message size is a multiple of a block size. (

default: False)
--add_partial [requires --ciph_exp]

For use with --ciph_exp flag. When this option is set, a
PARTIAL

bit will be set to 1 in the header of a data segment
if the size of this segment is not a multiple of a block

size.

Note: This option is required for algorithms such as
AES_COPA

(default: False)

:
Formatting options::

--msg_format SEGMENT_TYPE [SEGMENT_TYPE ...]
Specify the order of segment types in the input to

encryption and
decryption. Tag is always omitted in the input to encryption

, and
included in the input to decryption. In the expected output

from

51

encryption tag is always added last. In the expected output
from

decryption only nsec and data are used (if specified).
Len is always automatically added as a first segment in the
input for encryption and decryption for the offline

algorithms.
Len is not allowed as an input to encryption or decryption

for
the online algorithms.

Example 1:
--msg_format npub tag data ad

The above example generates
for an input to encryption: npub, data (plaintext), ad
for an expected output from encryption: data (ciphertext),

tag
for an input to decryption: tag, data (ciphertext), ad
for an expected output from decryption: data (plaintext)

Example 2:
--msg_format npub_ad data_tag

The above example generates
for an input to encryption: npub_ad, data (plaintext)
for an expected output from encryption: data_tag (

ciphertext_tag)
for an input to decryption: npub_ad, data_tag (

ciphertext_tag)
for an expected output from decryption: data (plaintext)

Valid Segment types (case-insensitive):
npub -> public message number
nsec -> secret message number
ad -> associated data
ad_npub -> associated data || npub
npub_ad -> npub || associated data
data -> data (pt/ct)
data_tag -> data (pt/ct) || tag
tag -> authentication tag

Note: no support for multiple segments of the same type,
separated by segments of another type e.g., header and

trailer,
treated as two segments of the type AD, separated by the

message segments

(default: (’npub’, ’ad’, ’data’, ’tag’))
--offline Indicate that the cipher is offline, i.e., the length of AD

and
DATA must be known before the encryption/decryption starts.

If this
option is used, the length segment will be automatically

added as

52

a first segment in the input to encryption and decryption.
Otherwise, the length segment will not be generated for

either
encryption or decryption.
(default: False)

--min_ad BYTES Minimum randomly generated AD length (default: 0)
--max_ad BYTES Maximum randomly generated AD length (default: 1000)
--min_d BYTES Minimum randomly generated data length (default: 0)
--max_d BYTES Maximum randomly generated data length (default: 1000)
--max_block_per_sgmt COUNT

Maximum data block per segment (based on --block_size)
parameter (default: 9999)

--max_io_per_line COUNT
Maximum data length in multiples of I/O width in a data line

of test
file. This option helps readability when a test vector is

large.

Example:
If a user wants to limit a vector representation of data in

a file
to a block size where a block size is 64-bit and I/O = 32-

bit,
the value should be set to 2 (32*2 = 64 bits).

--io 32 --block_size 64
DAT = 000102030405060708090A0B0C0D0E0F

--io 32 --block_size 64 --max_io_per_line 2

DAT = 0001020304050607
DAT = 08090A0B0C0D0E0F
(default: 9999)

--pdi_file FILENAME Public data input filename (default: pdi.txt)
--sdi_file FILENAME Secret data input filename (default: sdi.txt)
--do_file FILENAME Data output filename (default: do.txt)
--dest PATH_TO_DEST Destination folder where the files should be written to. (

default: .)
--human_readable Create a human readable file (tests_vectors.txt) for each

test vector in the format similar to NIST test vectors
used in SHA-3, i.e.:

Message 1
Key = HEXSTR # if AEAD
Npub = HEXSTR # if AEAD
Nsec_PT = HEXSTR # if --nsec_size > 0
AD = HEXSTR # if AEAD
PT = HEXSTR # if AEAD
HASH = HEXSTR # if hash
Nsec_CT = HEXSTR # if --nsec_size > 0
CT = HEXSTR # if AEAD
TAG = HEXSTR # if AEAD
HASH_TAG = HEXSTR # if hash
(default: False)

53

:
[Experimental] CryptoCore options::

--cc_hls Generates test vectors for CryptoCore in C (used by HLS)
(default: False)

--cc_pad_enable Enable padding operation (default: False)
--cc_pad_ad PAD_AD_MODE

Associated data padding mode (default: 0)
--cc_pad_d PAD_D_MODE

Data input padding mode (default: 0)
--cc_pad_style PAD_STYLE

Padding style (default: 1)

54

Bibliography

[1] NIST, “Lightweight Cryptography: Project Overview,”
https://csrc.nist.gov/projects/lightweight-cryptography, 2019.

[2] J.-P. Kaps, W. Diehl, M. Tempelmeier, E. Homsirikamol, and K. Gaj,
“Hardware API for Lightweight Cryptography,” Tech. Rep., Oct. 2019.

[3] “CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness - web page,”
https://competitions.cr.yp.to/caesar.html, 2019.

[4] E. Homsirikamol, P. Yalla, F. Farahmand, W. Diehl, A. Ferozpuri, J.-P.
Kaps, and K. Gaj, “Implementer’s Guide to Hardware Implementations
Compliant with the CAESAR Hardware API, v2.0,” GMU, Fairfax,
VA, GMU Report, Dec. 2017.

[5] E. Homsirikamol, P. Yalla, and F. Farahmand, “De-
velopment Package for Hardware Implementations
Compliant with the CAESAR Hardware API, v2.0,”
https://cryptography.gmu.edu/athena/index.php?id=CAESAR,
Dec. 2017.

[6] Cryptographic Engineering Research Group (CERG) at George Ma-
son University, “Hardware Benchmarking of CAESAR Candidates,”
https://cryptography.gmu.edu/athena/index.php?id=CAESAR, 2019.

[7] “TUMEISEC crypto implementation repository,” https://gitlab.lrz.de/
tueisec/crypto-implementations/, git checkout.

[8] M. Tempelmeier, F. De Santis, G. Sigl, and J.-P. Kaps, “The CAESAR-
API in the Real World — Towards a Fair Evaluation of Hardware CAE-
SAR Candidates,” in 2018 IEEE International Symposium on Hard-

55

https://gitlab.lrz.de/tueisec/crypto-implementations/
https://gitlab.lrz.de/tueisec/crypto-implementations/

ware Oriented Security and Trust, HOST 2018, Washington, DC, Apr.
2018, pp. 73–80.

[9] M. Tempelmeier, G. Sigl, and J.-P. Kaps, “Experimental Power and
Performance Evaluation of CAESAR Hardware Finalists,” in 2018 In-
ternational Conference on ReConFigurable Computing and FPGAs,
ReConFig 2018, Cancun, Mexico, Dec. 2018, pp. 1–6.

[10] Cryptographic Engineering Research Group (CERG) at George Mason
University, “eXtended eXternal Benchmarking eXtension (XXBX),”
https://cryptography.gmu.edu/xxbx/index.php, 2019.

[11] F. Farahmand, A. Ferozpuri, W. Diehl, and K. Gaj, “Minerva: Auto-
mated hardware optimization tool,” in 2017 International Conference
on ReConFigurable Computing and FPGAs, ReConFig 2017. Cancun:
IEEE, Dec. 2017, pp. 1–8.

[12] Cryptographic Engineering Research Group (CERG) at George
Mason University, “Authenticated Encryption FPGA Ranking,”
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view,
2019.

56

	Introduction
	Compliance with the Requirements for Fair Benchmarking
	Top-level Block Diagram
	PreProcessor
	PostProcessor
	Header FIFO

	LWC Core Development
	Introduction
	The LWC Configuration
	I/O Port Widths
	Limitations

	CryptoCore Development
	Byte Order
	Interface
	Handshakes
	Design Procedure
	Dummy Authenticated Cipher
	Dummy Hash

	Verification
	Test vector generation (cryptotvgen)
	Hardware Simulation
	Hardware Testing

	Generation and Publication of Results
	Differences Compared to the CAESAR Hardware API Development Package
	Functionality
	Internal Structure
	Implementer's Guide

	Appendix A: cryptotvgen help
	Bibliography

