
Call for Protected Software Implementations of
Finalists in the NIST Lightweight Cryptography

Standardization Process
Cryptographic Engineering Research Group, George Mason University, U.S.A.

January 18, 2022

1 Introduction
We call for software implementations of finalists in the NIST Lightweight Cryptography Standardization
Process resistant against side-channel attacks such as power and electromagnetic analysis. The focus of
this call is on the use of platform-independent algorithmic countermeasures. The submitted code should
demonstrate strong resistance against side-channel attacks when executed on low-cost modern embedded
processors, such as ARM Cortex M4F, RISC-V (e.g., RV32IMAC), Microchip 8-bit AVR, and TI MSP430.
This code can contain assembly language instructions specific to a given Instruction Set Architecture (ISA).
All submitted implementations will be investigated by one or more Side-Channel Security Evaluation Labs.
The primary goal of these labs will be to validate the security claims of the implementers. However, the
tasks of these labs may extend beyond this major goal and include the key recovery attacks and various ways
of assessing the secret information leakage. The labs will be able to choose freely from all implementations
placed in the public domain. Additionally, implementers will be able to submit their code to particular labs.
Finally, labs will also be able to ask implementers for their deliverables.

2 Preliminary Requirements
Protected software implementations shall use the standard NIST API defined in Submission Requirements
and Evaluation Criteria for the Lightweight Cryptography Standardization Process, published in August
20181. Protected implementations shall not use nsec, beyond specifying it as an argument of
crypto aead encrypt() and crypto aead decrypt() set to NULL.

Considering the short amount of time devoted to analyzing protected implementations by the Side-
Channel Security Evaluation Labs, it is important that all submissions can be evaluated using the Test
Vector Leakage Assessment (TVLA) method, a.k.a., Welch’s t-test. To make it possible, we suggest that at
least one variant of the protected implementation is designed to accommodate this test.

2.1 Approach simplifying the evaluation of protected implementations via t-test
To simplify power correlation evaluation via Welch’s t-test without spurious correlation from sharing and
un-sharing operations, we propose the clear division of the protected implementation into three functions:
generate shares encrypt(), crypto aead encrypt shared(), combine shares encrypt(), for encryp-
tion, and
generate shares decrypt(), crypto aead decrypt shared(), combine shares decrypt(), for decryp-
tion.

1https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.
pdf

1

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

Only crypto aead encrypt shared() for encryption and crypto aead decrypt shared() for decryp-
tion should be used for leakage assessment. We propose that these functions follow the API defined below:

int crypto_aead_encrypt_shared (
mask_c_uint32_t *cs , unsigned long long *clen ,
const mask_m_uint32_t *ms , unsigned long long mlen ,
const mask_ad_uint32_t *ads , unsigned long long adlen ,
const mask_npub_uint32_t *npubs ,
const mask_key_uint32_t *ks

)

int crypto_aead_decrypt_shared (
mask_m_uint32_t *ms , unsigned long long *mlen ,
const mask_c_uint32_t *cs , unsigned long long clen ,
const mask_ad_uint32_t *ads , unsigned long long adlen ,
const mask_npub_uint32_t *npubs ,
const mask_key_uint32_t *ks

)

The corresponding data types used to represent words of specific inputs and outputs split into one or
more shares are defined as follows:

typedef struct
{

uint32_t shares [NUM_SHARES_M];
} mask_m_uint32_t ;

typedef struct
{

uint32_t shares [NUM_SHARES_C];
} mask_c_uint32_t ;

typedef struct
{

uint32_t shares [NUM_SHARES_AD];
} mask_ad_uint32_t ;

typedef struct
{

uint32_t shares [NUM_SHARES_NPUB];
} mask_npub_uint32_t ;

typedef struct
{

uint32_t shares [NUM_SHARES_KEY];
} mask_key_uint32_t ;

Values of constants NUM SHARES M, NUM SHARES C, NUM SHARES AD, NUM SHARES NPUB, and NUM SHARES KEY
shall be defined in the file api.h. Each of them should be an integer greater than or equal to 1. The default
value of these constants should be 1, which corresponds to no division into shares.

The generate shares encrypt() function should allow the division of all inputs to encryption, namely
m, ad, npub, and k, into Boolean shares. The generate shares decrypt() function should allow the division
of all inputs to decryption, namely c (including the tag), ad, npub, and k, into Boolean shares. The number
of shares may be different for each input, as defined in api.h.

2

The incomplete last word of m, ad, npub, and k shall be padded with zeros. The input c should be
treated in a special way. For the authenticated ciphers using tag, the last CRYPTO ABYTES of c are used by
the tag, and the first clen−CRYPTO ABYTES by the ciphertext. The function generate shares decrypt()
should first pad the last word of the ciphertext (not including the tag) with zeros. The tag should then
follow, starting on a boundary of a 32-bit word. Only after this initial preprocessing, the ciphertext and tag
should be masked.

The generate shares encrypt() and generate shares decrypt() functions should use the following
API:

void generate_shares_encrypt (
const unsigned char *m, mask_m_uint32_t *ms , const unsigned long long mlen ,
const unsigned char *ad , mask_ad_uint32_t *ads , const unsigned long long adlen ,
const unsigned char *npub , mask_npub_uint32_t *npubs ,
const unsigned char *k, mask_key_uint32_t *ks)

void generate_shares_decrypt (
const unsigned char *c, mask_c_uint32_t *cs , const unsigned long long clen ,
const unsigned char *ad , mask_ad_uint32_t *ads , const unsigned long long adlen ,
const unsigned char *npub , mask_npub_uint32_t *npubs ,
const unsigned char *k, mask_key_uint32_t *ks)

The combine shares encrypt() and combine shares decrypt() functions should allow combining Boolean
shares of the outputs, c for encryption and m for decryption. These functions should use the following APIs:

void combine_shares_encrypt (
const mask_c_uint32_t *cs , unsigned char *c, unsigned long long clen)

void combine_shares_decrypt (
const mask_m_uint32_t *ms , unsigned char *m, unsigned long long mlen)

2.2 Evaluation Procedures
For compatibility with benchmarking software, such as SUPERCOP, the execution time of authenticated en-
cryption and authenticated decryption, as well as other performance metrics, such as power consumption and
energy per bit, should be determined using standard NIST API. The functions crypto aead encrypt shared()
and crypto aead decrypt shared() will be used primarily for the purpose of leakage assessment. Side-
channel security evaluation labs may use either standard or non-standard APIs in their attempts at attacks.

Attempts at exploiting information leakage occurring during the execution of the functions
generate shares encrypt(), generate shares decrypt(),
combine shares encrypt(), and combine shares decrypt()
will be of interest to the cryptographic community but are not likely to demonstrate differences among LWC
candidates.

3 Suggested Deliverables
To simplify benchmarking, security analysis, and further optimizations of protected software implementations
of LWC algorithms, we propose a uniform way of publishing them on the web and submitting them to the
benchmarking and security evaluation labs.

All protected implementations of a given candidate developed by a particular group should be stored in
the same folder. This folder may either

1. become a basis of an online repository (e.g., a GitHub repository), in which case the submission consists
of the repository URL, including branch name, tag, or commit hash, or

3

2. be submitted as a single archive file (e.g., .zip) to the selected benchmarking and security evaluation
labs.

The contents of the submission folder should follow the guidance of the NIST LWC specification2 section
3.5.1 (AEAD) and 3.5.2 (Hash). Per this specification, in addition to the protected implementation, sub-
missions should include a reference implementation (ref) and Known-answer-test file (KAT) to allow existing
tools to verify implementation correctness.

Please name this folder using the following convention: <LWC Candidate Name> <Group Name>.

3.1 Source code
Source code for protected implementations shall be provided as C99 standard C suitable for compilation,
linkage, and assembly using standard tooling (e.g., GCC) for the target architecture(s). Architecture specific
optimizations (e.g., assembly language) may additionally be provided to demonstrate performance enhance-
ment. If the use of assembly language is intended to enhance resistance against side-channel attacks, then
this should be stated explicitly in the supporting documentation.

3.1.1 External Dependencies

Submissions for side-channel evaluation shall not depend on any external headers or libraries, including cryp-
tographic libraries (e.g., OpenSSL), outside of the C99 standard, with the exception of the randombytes.h
header from SUPERCOP, which may be used for masking or sharing:

/* for a constant time, non-blocking stream of random values from a uniform distribution. */
#include "randombytes.h"

// for reference, this header prototypes:
// extern void randombytes(unsigned char *, unsigned long long);

To ensure deterministic results, the random implementation shall be provided by the test harness (not
the submission) and will be initialized prior to execution of the cryptographic algorithm. Implementations
should use this call directly, rather than including a DRBG (based on AES, ChaCha, SHAKE, etc.) within
the implementation.

3.1.2 Directory Structure

The structure of a compliant submission should look like:

<Candidate_Name>_<Group_Name>
Documents

changelog.pdf # optional
coversheet.pdf
documentation.pdf

Implementations
crypto_aead

<Candidate_and_Variant_Name>
designers
LWC_AEAD_KAT_<CRYPTO_KEYBYTES*8>_<CRYPTO_NPUBBYTES*8>.txt
protected_<implementation_name>

api.h
aead.c

2https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.
pdf

4

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

other.h
other.c
other.S # assembly is acceptable
goal_powersca_1st # indicates 1st order protection against power analysis
goal_powersca_2nd # indicates 2nd order protection against power analysis
goal_emsca # indicates protection against electromagnetic analysis
architectures # one target arch per line
implementers # one implementer per line

... additional implementations may be provided, one per tertiary directory ...
ref

api.h
encrypt.c
implementers
other.c

LICENSE.txt
README.md

The <Candidate and Variant Name> is a single name incorporating the name of the candidate and its
specific variant. Different variants correspond to

• different algorithms of the same family

• different parameter sets, such as sizes of keys, nonces, tags, etc.

3.1.3 Boolean sharing definitions in api.h

In addition to standard definitions in api.h, the following definitions may be used by Boolean-shared im-
plementations:

1. NUM SHARES M the number of Boolean shares of message m

2. NUM SHARES C the number of Boolean shares of ciphertext and tag c

3. NUM SHARES AD the number of Boolean shares of authenticated data ad

4. NUM SHARES NPUB the number of Boolean shares of nonce npub

5. NUM SHARES KEY the number of Boolean shares of the secret key k

Each constant shall be an integer greater than or equal to 1.
For example, in a protected implementation which uses 3 shares of a 16-byte key but no other sharing,

api.h may look like:

#define CRYPTO_KEYBYTES 16
#define CRYPTO_NPUBBYTES 16
#define CRYPTO_NSECBYTES 0
#define CRYPTO_ABYTES 16
#define CRYPTO_NOOVERLAP 1

#define NUM_SHARES_M 1
#define NUM_SHARES_C 1
#define NUM_SHARES_AD 1
#define NUM_SHARES_NPUB 1
#define NUM_SHARES_KEY 3

5

3.1.4 Metadata Files

The following optional metadata files may be included alongside of source code within a 3rd-level folder:

1. goal powersca 1st - When present, this file3 indicates the implementation has been protected against
1st order Power Analysis Side-Channel attacks.

2. goal powersca 2nd - When present, this file3 indicates the implementation has been protected against
2nd order Power Analysis Side-Channel attacks.

3. goal emsca - When present, this file3 indicates the implementation has been protected against Elec-
tromagentic Side-Channel attacks.

4. architectures - File with one target microcontroller/microprocessor architecture. Contents described
in the Architectures section below.

5. implementers - File with one name per line indicating the authors of the protected implementation
source code

3.1.5 Architectures

For uniformity, a standard set of values for use within the architectures file are defined as follows:

Value ISA Example Targets Compiler
arm ARM STM32F arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb
avr AVR ATMega2560 avr-gcc
riscv32 RISC-V FE310 riscv64-unknown-elf-gcc -march=rv32imac
msp430 MSP-430 MSP430FR5969 msp430-elf-gcc

Note that there is neither validation of values nor limit on the number of lines in this file.

3.2 Known-Answer Tests
Each algorithm shall include a KAT produced by genkat aead.c available from NIST 4 in the second-level
folder (common to all implementations of a particular algorithm). Implementations which support hashing
should also include a KAT produced by genkat hash.c

3.3 Documentation of a protected implementation
Please provide one or more PDF files describing:

1. Protection Method

(a) name of the applied countermeasure
(b) corresponding primary reference describing this countermeasure (when applied to an arbitrary

cryptographic algorithm)

2. Results of the Preliminary Security Evaluation

(a) Attack/leakage assessment type
(b) Number of traces used
(c) Experimental setup

3This file may be empty, or contain human readable text briefly describing the mitigation
4https://csrc.nist.gov/Projects/Lightweight-Cryptography

6

i. Measurement platform and device-under-evaluation (e.g., ChipWhisperer, CW308 with STM32F3003
UFO Target)

ii. Description of measurements, e.g., shunt resistor value, current probe specification, electro-
magnetic probe specification and placement, or link to relevant documentation.

iii. Usage of bandwidth limiters, filters, amplifiers, etc. and their specification
iv. Frequency of operation
v. Oscilloscope and its major characteristics (e.g., bandwidth)
vi. Sampling frequency and resolution
vii. Are sampling clock and design-under-evaluation clock synchronized?

(d) Attack/leakage assessment characteristics
i. Data inputs and performed operations
ii. Source of random and pseudorandom inputs (e.g., DRBG type, seed values)
iii. Trigger location relative to the execution start time of the algorithm
iv. Time required to collect data for a given attack/leakage assessment
v. Total time of the attack/assessment
vi. Total size of all traces (if stored)
vii. Availability of raw measurement results

(e) Attack specific data
i. Power model
ii. Attack point

(f) Documentation of results
i. Graphs illustrating the obtained results, e.g., Test Vector Leakage Assessment (TVLA)

graphs, minimum traces to disclosure (MTD) graphs, guessing entropy (GE), etc.
ii. Attack scripts.

4 Proposed Timeline
• Call for protected software implementations

– First draft – December 13, 2021
– Discussion on the lwc-forum

– Final version – January 17, 2022

• Deadline for protected software implementations

– Submission to the selected benchmarking and security evaluation labs – March 15, 2022
– Announcement on the lwc-forum (optional) – March 15, 2022

• Benchmarking of Protected Implementations in terms of Throughput, Memory, Power, and Energy per
bit

– Preliminary version of the report – April 30, 2022
– Final version of the report (considering relative security of evaluated implementations) – July 30,

2022

• Security Evaluation Lab Reports

– Preliminary version of the report – April 30, 2022
– Final version of the report – June 30, 2022.

7

5 Contact Information
Jens-Peter Kaps and Kris Gaj
Cryptographic Engineering Research Group
George Mason University
jkaps@gmu.edu , kgaj@gmu.edu
https://cryptography.gmu.edu

8

mailto:jkaps@gmu.edu
mailto:kgaj@gmu.edu
https://cryptography.gmu.edu

	Introduction
	Preliminary Requirements
	Approach simplifying the evaluation of protected implementations via t-test
	Evaluation Procedures

	Suggested Deliverables
	Source code
	External Dependencies
	Directory Structure
	Boolean sharing definitions in api.h
	Metadata Files
	Architectures

	Known-Answer Tests
	Documentation of a protected implementation

	Proposed Timeline
	Contact Information

