
CAESAR Hardware API

Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand,
Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj

Cryptographic Engineering Research Group
George Mason University
Fairfax, Virginia 22030

email: {ehomsiri, wdiehl, aferozpu, ffarahma, pyalla, jkaps, kgaj}@gmu.edu

Abstract. In this paper, we define the CAESAR hardware Application
Programming Interface (API) for authenticated ciphers. In particular,
our API is intended to meet the requirements of all algorithms submit-
ted to the CAESAR competition. The major parts of our specification
include: minimum compliance criteria, interface, communication proto-
col, and timing characteristics supported by the core. All of them have
been defined with the goals of guaranteeing (a) compatibility among im-
plementations of the same algorithm by different designers, and (b) fair
benchmarking of authenticated ciphers in hardware.

1 Minimum Compliance Criteria

The recommended minimum compliance criteria are listed below:

1.1 Encryption/Decryption

Authenticated encryption and decryption should be implemented within one core,
but only one of these two operations can be executed at a time (half-duplex).

This feature demonstrates an algorithm’s ability to use shared resources for en-
cryption and decryption.

Alternatives (not recommended):

a) separate cores for encryption and decryption (simplex)
b) authenticated encryption and decryption within one core, with both opera-

tions capable of running in parallel (full-duplex).

1.2 Variants

Only a variant indicated in the cipher specification as the primary recommenda-
tion has to be implemented.

Other variants, if implemented, should be selectable by changing the default
values of generics or constants before synthesis. The implementation of these
variants should not affect any benchmarking results for the main variant.

1.3 Key scheduling

Key scheduling should be fully implemented within the hardware core.

This approach takes into account very different contributions of the key schedul-
ing unit to the entire cipher core area, which are specific for each algorithm.

An alternative (not recommended):

a) generation of round keys outside of the cipher core, e.g., in software.

1.4 Incomplete blocks

The core should properly handle incomplete blocks in associated data, message,
and ciphertext.

Handling of incomplete blocks substantially increases the core area for multiple
candidates, due to the large area required for variable shifts.

An alternative (not recommended):

a) handling only associated data, messages, and ciphertexts composed of full
blocks.

1.5 Padding

Padding in hardware, assuming that an unused portion of the last input data
word is filled with zeros.

Padding cost, in terms of area, is algorithm dependent, and not negligible. In
some algorithms, padding in software may need to be reversed in hardware be-
cause the tag calculation uses an unpadded last block.

Alternatives (not recommended):

a) Padding in hardware, assuming that an unused portion of the last block is
filled with zeros.

b) Padding in software, followed, if needed, by modifications of the last blocks
in hardware.

1.6 Unused portions of the last block

Clearing any unused portions of the last word during encryption and decryption.

An alternative (not recommended):

a) potentially leaking some key-related data using unused portions of the last
block.

2

1.7 Decrypted message release

Releasing the decrypted message blocks immediately.

We assume that the delayed release of decrypted data, dependent on the result
of authentication, will be handled by an external circuit, which is FIFO-based
and similar for each candidate.

An alternative (not recommended):

a) storing a decrypted message internally, until the result of verification is
known.

Pros: More complete functionality.
Cons: Complicates the design and benchmarking. Makes the calculation of the
output latency and throughput dependent on the output buffer size and imple-
mentation details (e.g., support for simultaneous reading and writing).

1.8 Empty AD/message/ciphertext

Allowing empty associated data, empty message/ciphertext, and and empty input
(no AD, no message/ciphertext)

Empty input could be used together with the input message number, Npub, for
user authentication.

Alternatives (not recommended):

a) not allowing empty associated data
b) not allowing empty message/ciphertext
c) not allowing empty input.

1.9 Supported maximum size of AD/plaintext/ciphertext

single-pass authenticated ciphers: 232 bytes
two-pass authenticated ciphers: 211 bytes

Maximum sizes defined in the CAESAR candidates’ specifications are unrealis-
tic. Too large values may affect both area and maximum clock frequency of the
hardware core (e.g., because of wide internal counters).

211 bytes > 1500 bytes = maximum transmission unit (MTU) of popular com-
munication protocols, such as Ethernet v2.

3

1.10 Fractions of bytes

The size of all inputs is assumed to be expressed in bytes. As a result, the core
should support only inputs composed of full bytes. No fractions of bytes should
be allowed.

An alternative (not recommended):
a) the size of inputs expressed in bits.

Allowing inputs of arbitrary size in bits would substantially increase the area
required for handling of incomplete blocks.

1.11 Maximum number of independent streams of data processed
in parallel

The core should process only one stream of data (i.e., a single independent input
understood as composed of any subset of Npub, Nsec, AD, Message, Ciphertext,
and Tag, supported by the encryption or decryption operation of a given au-
thenticated cipher) at a time (without an overlap). We refer to such core as a
single-stream implementation. The single-stream implementation may still take
advantage of parallel processing for blocks belonging to the same input/stream.

An alternative (not recommended):
a) a multi-stream implementation that supports processing of multiple inde-

pendent inputs/streams in parallel.

In the multi-stream implementations:
– Throughput is limited only by the maximum circuit area.
– Multiple messages/ciphertexts processed in parallel would require multiple

public data input (PDI) and data outputs (DO) ports. See Section 2 for the
detailed descriptions of these ports.

1.12 External memory

Single-pass algorithms: No
Two-pass algorithms: Yes (but only for results of the first pass)

1.13 One clock domain

One clock input. Clock operating at the maximum clock frequency determined by
the critical path located entirely inside of the hardware module.

An alternative (not recommended):
a) separate clocks for input module, output module, and cipher core.

Pros: Possible smaller values of data bus widths.
Cons: Difficulties with determining the maximum clock frequency of the cipher
core.

4

1.14 Passing unchanged parts of the input to the output

Parts of the data inputs that are not changed by encryption or decryption opera-
tions, respectively, are not passed to the output. In particular, Npub and AD are
not a part of the output from either encryption or decryption. See Fig. 4.

This assumption removes the need for any bypass FIFO necessary to pass any
unchanged data to the output. Any formatting of an output from decryption,
for the purpose of transmission through the network or decryption, is assumed
to be performed outside of the cipher core.

An alternative (not recommended):

a) Passing unchanged parts of the input to the output.

Pros: More complete functionality.
Cons: The design time and area overhead for adding standard functionality that
may be implemented in a coherent way outside of the authenticated cipher core.

1.15 Permitted widths of data ports (in bits)

Public Data Input (PDI) and Data Output (DO) ports:

Lightweight implementations: w = 8, 16, 32
High-speed implementations: 32 ≤ w ≤ 256.

Secret Data Input (SDI) ports:

Lightweight implementations: w = 8, 16, 32
High-speed implementations: 32 ≤ sw ≤ 64.

See Section 2 and Fig. 1 for the exact meaning of PDI, SDI, DO, w and sw.

Implementations of a particular authenticated cipher, with the same w and sw,
following all other minimum compliance criteria, should be clearly compatible.
Implementations with different values of w or sw should be compatible under
the assumption that the decryption input is reformatted in software or hard-
ware (from one input word width to another) using a universal function/circuit,
common for all candidates.

2 Interface

The general idea of the CAESAR interface for an authenticated cipher core
(denoted by AEAD) is shown in Fig. 1. The interface is composed of three
major data buses for:

– Public Data Inputs (PDI)

5

status_ready

Ports

PDI

Secret Data Input

Ports

SDI

clk rst

AEAD

rstclk

pdi_valid

pdi_ready

w

Data Output

Ports

DO
w

do_ready

do_valid

sdi_valid

sdi_ready

sw
sdi_data

pdi_data do_data

Public Data Input

Fig. 1: AEAD Interface

– Secret Data Inputs (SDI), and
– Data Outputs (DO), respectively,

as well as the corresponding handshaking control signals, named valid and ready.
The valid signal indicates that the data is ready at the source, and the ready
signal indicates that the destination is ready to receive them.

FIFO

clk rst

s_axis_tdata

s_axis_tvalid

s_axis_tready

ww

sw
dout

empty

read

m_axis_tdata

m_axis_tvalid

m_axis_tready

Master

AXI4−Stream

clk rst

AEAD

clk rst

pdi_valid

pdi_ready do_ready

do_valid

sdi_valid

sdi_ready

sdi_data

pdi_data do_data

AXI4−Stream

Slave

rstclk

SDI

Fig. 2: Typical external circuits: AXI4-Stream IPs

6

full

clk rst

sw

w

rstclk rd_clk
wr_clk =

w

dout

empty

read

dout

empty

read

rst clkwr_clk
rd_clk =

SDI

FIFO

FIFO

PDI

rd_clk =rstwr_clk
clk

din

write

AEAD

rstclk

sdi_valid

sdi_ready

do_ready

do_valid

do_data

sdi_data

pdi_valid

pdi_ready

pdi_data

FIFO

DO

Fig. 3: Typical external circuits: FIFOs

The physical separation of Public Data Inputs (such as the message, associ-
ated data, public message number, etc.) from Secret Data Inputs (such as the
key) is dictated by the resistance against any potential attacks aimed at accept-
ing public data, manipulated by an adversary, as a new key.

The handshaking signals are a subset of major signals used in the AXI4-
Stream interface [1]. As a result AEAD can communicate directly with the AXI4-
Stream Master through the Public Data Input, and with the AXI4-Stream Slave
through the Data Output, as shown in Fig. 2. At the same time, AEAD is also
capable of communicating with much simpler external circuits, such as FIFOs,
as shown in Fig. 3.

In both cases, the Secret Data Input is connected to a FIFO, as the amount
of data loaded to the core using this input port does not justify the use of a
separate AXI4-Stream Master, such as DMA.

An additional advantage of using FIFOs at all data ports is their potential
role as suitable boundaries between the two clock domains, used for communica-
tion and computations, accordingly. This role is facilitated by the use of separate
read and write clocks, shown in Fig. 3 as rd_clk and wr_clk, accordingly. For
a better compatibility with the AXI communication interface, all FIFOs men-
tioned in our description are assumed to operate in the First-Word Fall-Through
mode (as opposed to the standard mode).

The reset input can be either synchronous or asynchronous, and either active-
high or active-low, depending on the conventions used in a given technology (e.g.,
FPGA vs. ASIC), as well as the personal preference of the designers.

7

Nsec

Key

TagNpub AD CiphertextNsec
Enc

Key

Message StatusNsec
Enc StatusCiphertext Tag

DecryptionEncryption

Npub Nsec AD Message

Fig. 4: Input and Output of an Authenticated Cipher Core. Notation: Npub -
Public Message Number, Nsec - Secret Message Number, Enc Nsec - Encrypted
Secret Message Number, AD - Associated Data

seg_0_header

seg_0 = Key

instruction = LDKEY

Fig. 5: Format of Secret Data Input for loading the key

3 Communication Protocol

All parts of a typical input and a typical output of an authenticated cipher
are shown in Fig. 4, for encryption and decryption, respectively. Npub denotes
Public Message Number, such as Nonce or Initialization Vector. Nsec denotes
Secret Message Number, which was recently introduced in some authenticated
ciphers and is a part of the CAESAR software API [2]. Both Npub and Nsec are
typically assumed to be unique for each message encrypted using a given key.
The difference is that Npub is sent to the other side in clear, while Nsec is sent
in the encrypted form.

All parts of an input to encryption, other than a key, are optional, and can
be omitted. If a given part is omitted, it is assumed to be an empty string.

The proposed format of the Secret Data Input is shown in Fig. 5. The entire
input starts with an instruction, which in case of SDI is limited to Load Key
(LDKEY). The instruction is followed by segments. Each segment starts with a
separate header, describing its type and size. In case of SDI, the only segment
type necessary to meet the minimum compliance criteria is: Key, denoting a
string of bits carrying an authenticated cipher key.

The proposed format of the Public Data Input is shown in Fig. 6. The al-
lowed instruction types are: Activate Key (ACTKEY), Authenticated Encryp-
tion (ENC), and Authenticated Decryption (DEC). The Activate Key instruc-
tion, typically directly precedes the Authenticated Encryption or Authenticated
Decryption instruction. PDI is divided into segments. Segment types allowed

8

seg_3 = Msg_0

seg_1_header

seg_1 = AD_0

seg_0 = Npub

seg_2_header

seg_2 = AD_1

seg_0_header

instruction = ACTKEY

instruction = ENC

(b)

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

(a)

instruction = ENC

instruction = ACTKEY

seg_4_header

seg_3_header

seg_2 = Msg

seg_4 = Msg_1

Fig. 6: Format of Public Data Input in case of a) one segment for each data type,
b) multiple segments for AD and Message

during authenticated encryption include: Public Message Number (Npub), Se-
cret Message Number (Nsec), Associated Data (AD), and Message. Segment
types allowed during authenticated decryption include: Public Message Number
(Npub), Encrypted Secret Message Number (Enc Nsec), Associated Data (AD),
Ciphertext, and Tag.

Any segment type can be omitted, if it is not required by a given cipher.
However, empty AD, empty message, and empty ciphertext must be provided
using a separate segment, with the Segment Length field of the respective header
set to 0. Public and Secret Message Numbers can only use one segment, as their
sizes are typically quite small (in the range of 16 bytes).

The Associated Data and Message can be (but do not have to be) divided into
multiple segments (as shown in Fig. 6b). The maximum size of each segment is
assumed to be 216 − 1 bytes for single-pass authenticated ciphers, and 211 bytes
for two-pass authenticated ciphers. The primary reasons for dividing AD and
Message into multiple segments is that the full message size may be unknown
when authenticated encryption starts, and/or the maximum single segment size
(specified above) is smaller than the message size.

The instruction/status format is shown in Fig. 7. For instruction, the Opcode
field determines which operation should be executed next. For status, the Opcode
field is replaced by the Status field, which can be set to only two values, PASS
or FAIL.

The segment header format is shown in Fig. 8. The segment header consists
of:

9

1111 − Failure

Status

Opcode
or

4 12

Opcode:

0100 − Load Key (LDKEY)

0111 − Activate Key (ACTKEY)

MSB

Reserved

LSB

0011 − Authenticated Decryption (DEC)

0010 − Authenticated Encryption (ENC)

Status:

Others − Reserved

Note: If w < 16, more than one word should be used

1110 − Success

Fig. 7: Instruction/Status Format

EOI

8

1 1 1 14

16

Divided into ceil(32/w) words, starting from MSB

ReservedInfo Segment Length

MSB

Type
Segment

LSB

EOT

Partial

Last

8

Fig. 8: Segment Header Format

Table 1: Segment Type Encoding
Encoding Type Encoding Type

0000 Reserved 1000 Tag
0001 AD 1001 Reserved
0010 Npub||AD 1010 Length
0011 AD||Npub 1011 Reserved
0100 Plaintext 1100 Key
0101 Ciphertext 1101 Npub
0110 Ciphertext||Tag 1110 Nsec
0111 Reserved 1111 Enc Nsec

10

– 4-bit Segment Type indicates the type of data that the current segment
contains. The type encoding is defined in Table 1.

– 1-bit optional Partial bit indicates that the current segment contains an in-
complete block of message or the corresponding ciphertext. The only CAE-
SAR candidate we are aware of that requires this bit is the Round 2 AES-
COPA.

– 1-bit EOI (End-Of-Input) indicates that the current segment is the last
segment of input other than the Length segment, Tag segment, or any empty
segment.

– 1-bit EOT (End-Of-Type) indicates that the current segment is the last
segment of the current Segment Type.

– 1-bit Last indicates that the current segment is the last segment, i.e. no more
segments are associated with the given instruction.

– 8 reserved bits for future extensions.
– 16-bit Segment Length to specify the size of data in the given segment in

bytes.

Several examples, illustrating the correct values of the flags EOI, EOT, and Last,
for multiple realistic scenarios are shown in Table 2.

seg_2 = Message

instruction = ACTKEY

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

(a)

instruction = ENC

(b)

seg_1_header

seg_1 = Tag

seg_0_header

seg_0 = Ciphertext

Status

Fig. 9: Format of Public Data Input (PDI) and Data Output (DO) of authenti-
cated decryption operation for ciphers that do not use Nsec: a) PDI, b) DO

Figures 9 and 10 present typical format of input (PDI) and output (DO) of
authenticated encryption and decryption operation, respectively, for the ciphers
that do not use Nsec. At the input (PDI ports), a message typically starts with
the key activation instruction (ACTKEY), followed by an operational instruc-
tion (ENC or DEC). Header and data segments for different types of data sub-
sequently follow. For encryption and decryption operation, the order typically is
Npub, AD, Data (Plaintext or Ciphertext) and Tag (for decryption only). The
order of segment types that can be processed by a given core is a feature of the
specific implementation, and needs to be clearly documented.

11

Table 2: Examples of correct values of input flags for encryption and decryption
operations in different scenarios. BS = block size. MBS = an integer multiple of
the block size.

T
yp

es
S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
es

S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
es

S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
es

S
iz

e
E
O

I
E
O

T
L
as

t
T

yp
ic

al
E
xa

m
p
le

A
:
A

D
=

0,
M

es
sa

ge
=

0
E
xa

m
p
le

B
:
A

D
=

0,
M

es
sa

ge
>

0
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

1
1

0
N
pu

b
>
0

1
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

0
0

1
0

A
D

0
0

1
0

A
D

0
0

1
0

A
D

0
0

1
0

M
sg

0
0

1
1

C
T

0
0

1
0

M
sg

>
0

1
1

1
C
T

>
0

1
1

0
T
A
G

>
0

0
1

1
T
A
G

>
0

0
1

1
E
xa

m
p
le

C
:
A

D
>

0,
M

es
sa

ge
=

0
E
xa

m
p
le

D
:
A

D
>

0,
M

es
sa

ge
>

0
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

>
0

1
1

0
A
D

>
0

1
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
M
sg

0
0

1
1

C
T

0
0

1
0

M
sg

>
0

1
1

1
C
T

>
0

1
1

0
T
A
G

>
0

0
1

1
T
A
G

>
0

0
1

1
C

ip
h
er

te
xt

E
xp

an
si

on
(A

D
>

0)
E
xa

m
p
le

E
:
M

es
sa

ge
=

0
E
xa

m
p
le

F
:
M

es
sa

ge
<

B
S

E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

>
0

1
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
M
sg

0
0

1
1

C
T

B
S

1
1

0
M
sg

<
B
S

1
1

1
C
T

B
S

1
1

0
T
A
G

>
0

0
1

1
T
A
G

>
0

0
1

1
E
xa

m
p
le

G
:
(M

es
sa

ge
%

B
S
)

=
0

E
xa

m
p
le

H
:
(M

es
sa

ge
%

B
S
)

>
0

E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
E
n
cr

yp
ti

on
D

ec
ry

p
ti

on
N
pu

b
>
0

0
1

0
N
pu

b
>
0

0
1

0
N
pu

b
0

0
1

0
N
pu

b
>
0

0
1

0
A
D

>
0

0
1

0
A
D

>
0

0
1

0
A
D

0
0

1
0

A
D

>
0

0
1

0
M
sg
[0
]
M
B
S

1
0

0
C
T
[0
]
M
B
S

0
0

0
M
sg
[0
]
M
B
S

0
0

0
C
T
[0
]
M
B
S

0
0

0
M
sg
[1
]

0
0

1
1

C
T
[1
]

B
S

1
1

0
M
sg
[1
]
<
B
S

1
1

1
C
T
[1
]

B
S

1
1

0
T
A
G

16
0

1
1

T
A
G

16
0

1
1

12

seg_0 = Message

seg_3_header

seg_3 = Tag

seg_1_header

seg_1 = AD

seg_2_header

seg_2 = Ciphertext

(a)

seg_0_header

seg_0 = Npub

instruction = ACTKEY

seg_0_header

Status

(b)

instruction = DEC

Fig. 10: Format of Public Data Input (PDI) and Data Output (DO) of authen-
ticated decryption operation for ciphers that do not use Nsec: a) PDI, b) DO

seg_3 = Message

seg_0_header

seg_0 = Npub

instruction = ENC

instruction = ACTKEY

seg_3_header

seg_2_header

seg_2 = AD

(a)

seg_1_header

sec_1 = Nsec

(b)

seg_0_header

seg_1_header

seg_2 = Tag

seg_1 = Ciphertext

sec_0 = Enc Nsec

seg_2_header

Status

Fig. 11: Format of Public Data Input (PDI) and Data Output (DO) of authen-
ticated decryption operation for ciphers that use Nsec: a) PDI, b) DO

13

seg_1 = Message

seg_1_header

sec_1 = Enc Nsec

(a)

seg_0_header

seg_0 = Npub

instruction = ACTKEY

seg_3_header

seg_4_header

seg_2_header

seg_2 = AD

seg_3 = Ciphertext

seg_4 = Tag

instruction = DEC

(b)

Status

seg_0_header

seg_1_header

sec_0 = Nsec

Fig. 12: Format of Public Data Input (PDI) and Data Output (DO) of authen-
ticated decryption operation for ciphers that use Nsec: a) PDI, b) DO

For ciphers that do not use NSec, at the output (DO ports), the cryptographic
core needs to only output the ciphertext and the tag for encryption, and the
message and the status for decryption. In the case that Nsec is used, additional
segments should be added as shown in Figures 11 and 12.

For some authenticated ciphers (e.g., AES-CCM), the entire lengths of asso-
ciated data and message/ciphertext have to be known before the encryption/de-
cryption starts. In order to make it possible, an optional Segment Type, called
Length is defined. This segment contains only the total length of associated data
concatenated with the total length of message/ciphertext, expressed in bytes.

For authenticated ciphers that utilize ciphertext expansion, i.e., the ciphertext
size can be larger than the message size, it is recommended to split the last
message segment into multiple segments in each case when data size is larger
than the algorithm’s block size. In particular, the last segment should be always
smaller than the authenticated cipher’s block size. If it is equal to the block
size, then a new segment header containing zero length should be inserted. This
special formatting is to ensure that the segment length for the last segment of
a particular type can be changed without the need to buffer data for the whole
segment.

4 Timing Characteristics

Figures 13 and 14 specify the timing characteristics of the ports PDI and DO,
respectively. Input ports are shown in blue and the output ports in red. The
contents of data buses are read and acknowledged when *_valid and its corre-

14

sponding *_ready are both asserted. Data is assumed to be present at the output
of the source module when *_valid is asserted.

Fig. 13: Example timing diagram for PDI

Fig. 14: Example timing diagram for DO

Value

n+6

n+2
n+1

n+7

n+4
n+3

n

D[6]
D[5]

D[2]
D[1]

D[7]

D[4]
D[3]

D[0]

Addr

n+5

(a) Memory

0

D[1] D[2] D[3]word 0
D[4] D[5] D[6] D[7]word 1

31

D[0]

(b) 32-bit word representation

Fig. 15: Data representation

5 Conclusions

We have defined the full specification of the hardware API for authenticated
ciphers, suitable for hardware benchmarking of candidates competing in the

15

CAESAR contest [2] and their comparison with a previous generation of au-
thenticated encryption algorithms, such as AES-GCM and AES-CCM.

Our proposal meets one of the fundamental properties of every properly
defined API:

If a given algorithm is implemented independently by two different groups
using the same API, one should be able to

– encrypt a message using the first implementation, and
– decrypt it using the second implementation.

To be exact, our assumption is that either

1. both implementations use the same values of the data port widths w and
sw, or

2. simple reformatting (word width conversion) of the input to decryption is
performed outside of the cipher core (in software or hardware).

On top of that, in both cases, any missing segments, not passed to the output
of encryption (namely Npub and AD) need to be properly combined with output
from encryption in order to obtain a complete and valid input to decryption.

A similar API, described in [3], has been successfully used to implement and
benchmark over a dozen of Round 1 CAESAR candidates, all qualified to Round
2 of the competition.

References

1. ARM. AMBA Specifications. [Online]. Available: http://www.arm.com/products/
system-ip/amba-specifications.php

2. CAESAR: Competition for Authenticated Encryption: Security, Applicability,
and Robustness. (2016, January) Cryptographic competitions. [Online]. Available:
http://competitions.cr.yp.to/index.html

3. E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif, and K. Gaj,
“GMU Hardware API for Authenticated Ciphers,” Cryptology ePrint Archive, Re-
port 2015/669, 2015.

16

http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
http://competitions.cr.yp.to/index.html

	CAESAR Hardware API

