
GMU Hardware API for Authenticated Ciphers?

Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farahmand, Malik Umar Sharif, and
Kris Gaj

Electrical and Computer Engineering Department
George Mason University
Fairfax, Virginia 22030

email: {ehomsiri, wdiehl, aferozpu, ffarahma, masharif2, kgaj}@gmu.edu

Abstract. In this paper, we propose a universal hardware API for authenticated ciphers, which can be
used in any future implementations of authenticated ciphers submitted to the CAESAR competition. A
common interface and communication protocol would help in reducing any potential biases, and would
make the comparison in hardware more reliable and fair. By design, our proposed API is equally suit-
able for hardware implementations of authenticated ciphers developed manually (at the register-transfer
level), and those obtained using high-level synthesis tools. Our implementation of the proposed inter-
face and communication protocol includes universal, open-source pre-processing and post-processing
units, common for all CAESAR candidates. Apart from the full documentation, examples, and the
source code of the pre-processing and post-processing units, we are making available in public domain
a) a universal testbench to verify the functionality of any CAESAR candidate implemented using the
GMU hardware API, b) a Python script used to automatically generate test vectors for this testbench,
c) VHDL wrappers used to determine the maximum clock frequency and the resource utilization of
all implementations, and d) RTL VHDL source codes of high-speed implementations of AES and the
Keccak Permutation F. We hope that the existence of these resources will substantially reduce the
time necessary to develop hardware implementations of all CAESAR candidates for the purpose of
evaluation, comparison, and future deployment in real products.

1 Motivation

The CAESAR competition [1], launched in 2014, aims at identifying a portfolio of future authenticated
ciphers with security, performance, and flexibility exceeding that of the current standards, such as AES-
GCM [2] and AES-CCM [3].

Although, security is commonly accepted to be the most important criterion in all cryptographic contests,
it is rarely by itself sufficient to determine a winner. This is because multiple candidates generally offer
adequate security, and a trade-off between security and performance must be investigated.

The focus of this paper is to facilitate the comparison of modern authenticated ciphers in terms of their
performance and cost in hardware, and in particular in FPGAs, All Programmable Systems on Chip, and
ASICs. As a starting point for such a comparison we propose defining hardware API, composed of the
specification of an interface of the authenticated cipher core, and the communication protocol describing the
exact format of all inputs and outputs, as well as the timing dependencies among all data and control signals
passing through the specified interface.

Similarly to the case of previous contests, software implementations of the CAESAR candidates are being
compared using a uniform API, clearly defined in the call for submissions [1]. So far, no similar hardware
API has been proposed, not to mention accepted by the cryptographic community.

As a result any attempt at the comparison of existing hardware implementations is highly dependent
on specific assumptions about the hardware API, made independently by various hardware designers. These
assumptions can have potentially a very high influence on all major performance measures of the developed
implementations.

Additionally, hardware API is typically much more difficult to modify than software API, making any
last minute standardization efforts and code adjustments highly inefficient and questionable.

? This work is supported by NSF Grant #1314540

Therefore, there is a clear need for a proposal regarding a uniform hardware API, which could be further
modified and improved using a feedback from the cryptographic community, and eventually endorsed by the
CAESAR Committee, and adopted by majority of future hardware developers. The goal of our paper is to
address this issue by providing the exact specification of the proposed interface, as well as multiple supporting
materials, such as open-source codes of pre-processing and post-processing units, a universal testbench, and
uniform ways of generating optimized results.

2 Proposed Features

The proposed features of our hardware API are as follows:

– inputs of arbitrary size in bytes (but a multiple of a byte only)
– size of the entire message/ciphertext does not need to be known before the encryption/decryption starts

(unless required by the algorithm itself)
– wide range of data port widths, 8 ≤ w ≤ 256
– independent data and key inputs
– simple high-level communication protocol
– support for the burst mode
– possible overlap among processing the current input block, reading the next input block, and storing the

previous output block
– storing decrypted messages internally, until the result of authentication is known
– support for encryption and decryption within the same core
– ability to communicate with very simple, passive devices, such as FIFOs
– ease of extension to support existing communication interfaces and protocols, such as AMBA-AXI4 –

a de-facto standard for the System-on-Chip (SoC) buses [4], and PCI Express – high-bandwidth serial
communication between PCs and hardware accelerator boards [5].

3 Previous Work

Several general-purpose interfaces for SoCs have been recently proposed, including but not limited to,

– AXI4, AXI4-Lite, AXI4-Stream (Advanced eXtensible Interface) from ARM [4]
– PLB (Processor Local Bus) and OPB (On-chip Peripheral Bus) from IBM [6]
– Avalon from Altera [7]
– FSL (Fast Simplex Link) from Xilinx Inc. [8], and
– Wishbone (used by opencores.org) from Silicore Corp. [9]

These interfaces define the meaning and role of all data and control signals of the communication buses,
and the timing dependencies among them, but they do not describe the format of either data inputs or data
outputs passing the boundaries of the cryptographic core.

During the SHA-3 contest [10], the first full hardware APIs, dedicated to hash functions, were proposed
by:

– GMU [11], [12]
– Virginia Tech [13], and
– University College Cork [14].

Our current proposal is partially based on the experiences gained during the SHA-3 contest by designing
and using the GMU interface and communication protocol for hash function cores.

The majority of interfaces used so far in the CAESAR competition have been quite minimalistic and
candidate specific (e.g., [15]).

The only major exception was the adoption of the AXI4-Stream interface by the ETH student, Cyril
Arnould, in his Master’s Thesis defended in March 2015 [16]. However, the limitation of this solution was
the use of non-uniform, algorithm-specific control ports, which make the corresponding cores mutually in-
compatible. Additionally, Arnaud’s proposal does not contain any description of the exact formats of inputs
and outputs of the cipher.

4 Specification

4.1 Interface

The general idea of our proposed interface for an authenticated cipher core (denoted by AEAD) is shown in
Fig. 1. The interface is composed of three major data buses for

– Public Data Inputs (PDI)
– Secret Data Inputs (SDI), and
– Data Outputs (DO), respectively,

as well as the corresponding handshaking control signals, named valid and ready. The valid signal indicates
that the data is ready at the source, and the ready signal indicates that the destination is ready to receive
them.

clk

sdi

sdi_valid

sdi_ready

sw

pdi

pdi_valid

pdi_ready

w

Public Data Input

Ports

PDI

Secret Data Input

Ports

SDI

clk rst

Data Output

Ports

DO
w

do

do_ready

do_valid

AEAD

rst

Fig. 1: AEAD Interface

The physical separation of Public Data Inputs (such as the message, associated data, public message
number, etc.) from Secret Data Inputs (such as the key and secret message number) is dictated by the
resistance against any potential attacks aimed at accepting public data, manipulated by an adversary, as a
new key.

The handshaking signals are a subset of major signals used in the AXI4-Stream interface. As a result
AEAD can communicate directly with the AXI4-Stream Master through the Public Data Input, and with
the AXI4-Stream Slave through the Data Output, as shown in Fig. 2. At the same time, AEAD is also
capable of communicating with much simpler external circuits, such as FIFOs, as shown in Fig. 3.

In both cases, the Secret Data Input is connected to a FIFO, as the amount of data loaded to the core
using this input port does not justify the use of a separate AXI4-Stream Master, such as DMA.

An additional advantage of using FIFOs at all data ports is their potential role as suitable boundaries be-
tween the two clock domains, used for communication and computations, accordingly. This role is facilitated
by the use of separate read and write clocks, shown in Fig. 3 as rd_clk and wr_clk, accordingly. All FIFOs
mentioned in our description are assumed to operate in the standard mode (as opposed to the First-Word
Fall-Through mode).

rst

w

sw

pdi

pdi_valid

pdi_ready

sdi

sdi_valid

sdi_ready

dout

empty

read

m_axis_tdata

m_axis_tvalid

m_axis_tready

Master

AXI4−Stream

clk rstclk rst

clk rst

clk rst

s_axis_tdata

s_axis_tvalid

s_axis_tready

AXI4−Stream

Slave
w

do

do_ready

do_valid

AEAD

clk

SDI

FIFO

Fig. 2: Typical external circuits: AXI4 IPs

full

pdi_valid

pdi_ready

clk rst

dout

empty

read

w
dout

empty

read

rst clkwr_clk
rd_clk =

sw

rstclk rd_clk
wr_clk =

din

write

pdi
w

AEAD

rstclk

SDI

FIFO

FIFO

PDI

rd_clk =rstwr_clk
clk

sdi

sdi_valid

sdi_ready

do

do_ready

do_valid
FIFO

DO

Fig. 3: Typical external circuits: FIFOs

4.2 Communication Protocol

All typical inputs and outputs of an authenticated cipher are shown in Fig. 4. Npub denotes Public Message
Number, such as Nonce or Initialization Vector. Nsec denotes Secret Message Number, which was recently
introduced in some authenticated ciphers. Both Npub and Nsec are typically assumed to be unique for each
message encrypted using a given key. In our hardware API, the Invalid output is assumed to be a single word
composed of all ones.

All inputs to encryption, other than a key, are optional, and can be omitted. If a given input is omitted,
it is assumed to be an empty string.

The proposed format of the Secret Data Input is shown in Fig. 5. The entire input starts with an
instruction, which in case of SDI is limited to Load Key. The instruction is followed by one or two segments.
Each segment starts with a separate header, describing its type and size. In case of SDI, the only allowed
segment types are: Key and Nsec (Secret Message Number).

Fig. 4: Input and Output of an Authenticated Cipher. Notation: Npub - Public Message Number, Nsec -
Secret Message Number, AD - Associated Data

seg_1 = NSEC

instruction

seg_0_header

seg_1_header

w−bit

seg_0 = Key

Fig. 5: Format of Secret Data Input

w−bit

instruction

seg_0_header

seg_0 = Npub

seg_1_header

seg_2_header

seg_1 = AD

seg_2 = Message

(a) Standard Input seg_4_header

w−bit

instruction

seg_0_header

seg_0 = Npub

seg_1_header

seg_1 = AD_0

seg_2_header

seg_2 = AD_1

seg_3_header

seg_3 = Msg_0

seg_3 = Msg_1

(b) Extended Input

Fig. 6: Format of Public Data Input

The proposed format of the Public Data Input is shown in Fig. 6. The allowed instruction types are: Acti-
vate Key, Authenticated Encryption, and Authenticated Decryption. The Activate Key instruction, typically
directly precedes the Authenticated Encryption or Authenticated Decryption instruction. PDI is divided into
segments. Segment types allowed during authenticated encryption include: Public Message Number (Npub),
Associated Data (AD), and Message. Segment types allowed during authenticated decryption include: Public
Message Number (Npub), Associated Data (AD), Ciphertext, and Tag. Any segment type can be omitted, if
it is not required by a given cipher. Public Message Number can only use one segment, as its size is typically
quite small (in the range of 16 bytes). The Associated Data and Message can be (but do not have to be)
divided into multiple segments (as shown in Fig. 6b).

The primary reasons for dividing AD and Message into multiple segments is that the full message size may
be unknown when authenticated encryption starts, and/or the maximum single segment size (determined
by the parameters of the implementation) is smaller than the message size (e.g., 216 bytes in case of GMU
supporting codes).

The instruction format is shown in Fig. 7. The Opcode field determines which operation should be
executed next. The Msg ID field should be set to a unique message identifier, between 0 and 255. Similarly,
the Key ID field should be set to a unique key identifier, between 0 and 255.

The segment header format is shown in Fig. 8. Seg Len is a size of a segment expressed in bytes. The field
Info contains information about the Segment Type, as well as single-bit flags denoting the last segment of a
particular type (EOT), and the last segment of the entire input (EOI), accordingly. In case of decryption,
both the tag segment and the last segment before the tag must be marked as the last segment of the entire
input (EOT=1 and EOI=1).

0101 − Activate Key

48 8

Divided into 24/w words, starting from MSB

Opcode0000Msg ID Key ID

MSB LSB

0010 − Authenticated Encryption

0011 − Authenticated Decryption

Others − Reserved

Opcode:

0100 − Load Key

4

Fig. 7: Instruction Format

Fig. 8: Segment Header Format

5 Supporting Codes for High-Speed Implementations

5.1 High-Level Block Diagram

The high-level block diagram of our proposed high-speed implementation of an authenticated cipher is shown
in Fig. 9. AEAD consists of AEAD Core and the memory region. The memory region is separated from the
AEAD Core for the ease of benchmarking.

The AEAD Core consists of the following three primary units: PreProcessor, PostProcessor, and Cipher-
Core. Supporting codes for PreProcessor, PostProcessor, and the memory region are provided as a part of
the GMU HW API distribution.

Bypass FIFO is a standard FIFO used for holding public input data that should be transferred to the
output module unchanged, e.g., segment headers and associated data. This data is held in the Bypass FIFO
for a short period of time until the PostProcessor is ready to receive it.

AUX FIFO is an auxiliary FIFO, operating in the standard mode, used to store a decrypted message
until this message is either fully authenticated or found invalid.

G_BS_BYTES

KEY_SIZE

BLOCK_SIZE

W

CTR_D_SIZE

CTR_AD_SIZE
len_a

len_d

len_a

len_d

G_TAG_SIZE
exp_tag exp_tag

write

din

full empty

dout

read

FIFO

Bypass

W 4 W 3

bdi_decryptbdi_decrypt

NPUB_SIZE

Processor

sdi_ready

sdisdi

sdi_ready

pdi_ready pdi_ready

pdipdi

bdi_eot

bdi_eoi

bdi_size

bdi_eot

bdi_size

bdi_eoi

bdi_read bdi_read

bdi_nodatabdi_nodata

G_BLOCK_SIZE

G_TAG_SIZE

bdo

tagbdi

key

do

do_ready

do

do_ready

bdo_data tag_data

tag_ready

tag_write

tag_ready

tag_write

bdi

key

exp_tag_ready exp_tag_ready

msg_auth_done msg_auth_valid

msg_auth_done

msg_auth_valid

msg_auth_done

b
y
p

a
s
s
_

fu
ll

b
y
p

a
s
s
_

w
r

b
y
p

a
s
s
_

e
m

p
ty

b
y
p

a
s
s
_

rd

statusdoutctrldin

a
u

x
_

fifo
_

s
ta

tu
s

a
u

x
_

fifo
_

d
o

u
t

a
u

x
_

fifo
_

d
in

a
u

x
_

fifo
_

c
trl

b
y
p

a
s
s
_

d
a

ta

do_validdo_valid

pdi_valid pdi_valid

sdi_validsdi_valid

CipherCore

bdo_ready

bdo_write

bdo_ready

bdo_write

bdo_sizebdo_size

Processor
Post

Pre

Controller

CipherCore

Datapath

CipherCore

AEAD Core

G_BS_BYTES+1

W

AEAD

AUX FIFO

bdi_proc

key_updated

key_needs_update

key_ready

bdi_ready

key_needs_update

key_ready

bdi_ready

key_updated

bdi_proc

bdi_nsec

bdi_adbdi_ad

bdi_nsec

npubnpub

npub_ready npub_ready

SW

W

Fig. 9: High-level block diagram of a high-speed implementation

5.2 PreProcessor and PostProcessor

The PreProcessor is responsible for the execution of the following tasks common for majority of CAESAR
candidates:

– parsing segment headers
– loading and activating keys

– Serial-In-Parallel-Out loading of input blocks
– padding input blocks, and
– keeping track of the number of data bytes left to process.

The PostProcessor is responsible for the following tasks:

– clearing any portions of output blocks not belonging to ciphertext or plaintext
– Parallel-In-Serial-Out conversion of output blocks into words
– formatting output words into segments
– storing decrypted messages in AUX FIFO, until the result of authentication is known, and
– generating an error word if authentication fails.

Our goal is to assure the following features of the supporting codes:

– Ease of use
– No influence on the maximum clock frequency of AEAD (up to 300 MHz in Virtex 7)
– Limited area overhead
– Clear separation between the core unit and internal FIFOs, including the
• Bypass FIFO for passing headers and associated data directly to PostProcessor, and
• AUX FIFO for temporarily storing unauthenticated messages after decryption.

The PreProcessor and PostProcessor cores are highly configurable using generics described in Appendix
A. These generics can be used for example to determine:

– the widths of the pdi, sdi, and do ports,
– the size of the message/ciphertext block, key, nonce, and tag,
– padding for the associated data and the message, and
– types and order of segments expected by a particular cipher.

The detailed specification of all ports of the PreProcessor or PostProcessor units is provided in Appendix
B and Appendix C.

The way of loading and activating a new key by the PreProcessor is described below:
For the first message and the subsequent key change, a new key must be loaded into the PreProcessor via

the SDI port first. This can be done by providing the Load Key instruction. A typical key loading sequence
of words is shown below:

 # 001 : Instruction(Opcode=Load key)
 INS = 0104010000000000
 # 001 : SgtHdr (Size= 16) (EOI=1)(EOT=1)(SgtType=Key)
 HDR = 0163000000000010
 DAT = D7B1CB5221D16D92
 DAT = BB910D157C6F1C04

In this example, the first word specifies the Load Key instruction. The second word specifies that the
subsequent data segment is of the key type, with the size of 16 bytes (128 bits). This segment is also the
end-of-type and the end-of-input segment. The next two words consist of the data representing the key.

Before the new key becomes active, it must be activated via the PDI port first. This mechanism facilitates
the synchronization between the two input ports. It also allows loading a new key without interfering with
the key that is being used. A typical key activation process is shown below:

 # 001 : Instruction (Opcode=Activate key)
 INS = 0105010000000000

This word must be applied before any other instruction word.

5.3 AES and Keccak Permutation F

Additional support is provided for designers of cipher cores of CAESAR candidates based on AES and
Keccak. Fully verified VHDL codes, block diagrams, and ASM charts of AES and Keccak Permutation
F. Permutation have been developed. Our AES core implements a basic iterative architecture of a block
cipher, with the SubBytes operation realized using memory. Either distributed memory (implemented using
multipurpose LUTs) or block memory is inferred depending on the specific options of FPGA tools. All
resources are available at the GMU ATHENa website

https://cryptography.gmu.edu/athena

5.4 Using Supporting Codes

A typical hardware development process based on the use of our supporting codes requires a designer to
modify the default values of generics in the AEAD_Core to match the needs of a targeted algorithm, and
then develop the CipherCore based on user’s preferences (see Section 6).

The primary benefit of using our supporting codes is that the designers can focus on developing the
CipherCore specific to a given algorithm, without worrying about the functionality common for multiple
authenticated ciphers. Additionally, the interface of the CipherCore has full-block widths for all major data
buses, which should substantially simplify the development effort.

6 The Development of CipherCore

The development of the CipherCore is left to individual designers, and can be performed using their own
preferred design methodology. The detailed meaning of all ports is given in Appendix B and Appendix C.
Answers to the following frequently asked questions might be helpful in developing an implementation fully
compatible with the GMU Hardware API:

– How to load a new key and activate it?

In order to properly handle keys, the cipher core should monitor the key_needs_update and key_ready
inputs, and provide key_updated output at the appropriate time. The circuit should operate as follows:

After reset, key_needs_update and key_ready are low. At this point, a new key can be loaded into the
input processor at any time.

After the new key is loaded using the SDI port, key_ready goes high. After the instruction ACTI-
VATE_KEY is received at the PDI port, the key_needs_update goes high. Note: The above two events
can occur in an arbitrary order.

After key_ready and key_needs_update are both high, and the cipher core is either in the period be-
tween reset and the first input, or in the period between two consecutive inputs, the cipher core should
read the new key. After the key is read, key_updated signal should be set to high. The key_updated
signal should be deactivated at the end of processing of the current input.

If a user wants to use the same key for the subsequent input data, ACTIVATE_KEY instruction can be
omitted from the PDI input port. In this case, the processing of new data will start as soon as an instruc-
tion describing the way of processing a new input is decoded (which is indicated by bdi_proc set to high).

In summary, the cipher core should monitor the key_needs_update port prior to processing any new
input. If key_needs_update is high, the cipher core should wait for key_ready=1, and then read the
new key, and acknowledge its receipt using the key_updated output. If key_needs_update is low and
the first instruction describing the way of processing a new input is decoded (bdi_proc=1), then the
cipher core should move directly to processing a new input using a previous key. If none of these two
events is detected, the cipher core should remain in the same state. The described behavior is shown in

https://cryptography.gmu.edu/athena

process data

key_ready?key_needs
update?

key_updated key initialization

1

0 0

1

10
bdi_proc?

key_check

Fig. 10: A part of the Algorithmic State Machine (ASM) chart describing a way in which the CipherCore
Controller may handle key loading and key activation

Fig. 10. The key initialization and process data are two separate states that operate depending on the
requirements of a specific cipher.

– How do I know if there is no associated data or data?

Empty associated data can be derived during loading the first data block via bdi_ad signal. If the first
data block is not of type AD (bdi_ad=0), there is an empty associated data.
Empty data can be derived while processing the last block of associated data. If the last block of AD
(bdi_ad=1 and bdi_eot=1) is also the last block of input (bdi_eoi=1), there is an empty data/en-
crypted data.

– How to specify a decryption operation?

The instruction word loaded via the PDI port contains an operational code that should be monitored in
the PreProcessor. An example of an Authenticated Decryption instruction is shown below:

 # 002 : Instruction (Opcode=AEAD decrypt)
 INS = 0203020000000000

When either a decryption (b’0001’) or authenticated decryption (b’0011’) operation is specified, the
bdi_decrypt signal goes high. The cipher core needs to monitor the bdi_decrypt in order to determine
whether the current input should be processed using a decryption or encryption operation.

– How to communicate with the PostProcessor?

The PostProcessor is capable of understanding outputs from the cipher core. The cipher core only needs
to provide the encrypted data/decrypted data and the tag to the bdo_data and tag ports, respectively,
whenever these values are available. The PostProcessor uses the segment header information transmitted
via Bypass FIFO to understand the order and organizes outputs accordingly. Typically, the PostProces-
sor receives data and organizes the output from Bypass FIFO and the cipher core’s datapath into the
following format.

For encryption operation:

 Source | Word : Data type
 ===
 bypass FIFO | Word 1 : Instruction header (Decryption)
 bypass FIFO | Word 2 : Segment header
 bypass FIFO | Word 3 : AD
 bypass FIFO |
 bypass FIFO | Word A : Segment header
 Datapath | Word A+1: Ciphertext
 Datapath |

 Output Processor | Word B : Segment header (Tag)
 Datapath | Word B+1: Tag_0
 Datapath | Word B+2: Tag_1

For decryption operation:
 Source | Word : Data type
 ===
 bypass FIFO | Word 1 : Segment header
 bypass FIFO | Word 2 : AD
 bypass FIFO |
 bypass FIFO | Word A : Segment header
 Datapath | Word A+1: Decrypted message
 Datapath |

Note: During decryption, the cipher core needs to calculate and pass to the PostProcessor all blocks
of decrypted message followed by all blocks of tag. The Bypass FIFO handles all headers (including
the instruction header) and all blocks of AD. The instruction header, public message number, and tag
segments are omitted in the final output sent by the PostProcessor to its output DO.

– Why does my decrypted data come out slower than an encrypted data?

During an authenticated decryption process, the PostProcessor stalls output until the msg_auth_done
is activated. All output blocks generated by the PostProcessor are placed within a buffer until the tag is
verified. Once the tag is verified, the stored data are released. As a result, the outputs of the decrypted
data are delayed. If the result of verification is incorrect, the PostProcessor sends just a single error code,
consisting of all ones, to the output DO port.

– How can I keep information signals valid until the end of the block processing?

Delaying the acknowledge signal (bdi_read) from the cipher core until a block is processed can achieve the
desired behavior. However, this approach can delay the loading of next data block as the PreProcessor is
stalled until it receives the acknowledge signal. As a result, creating a status register to store the required
information within the cipher core itself is better. Afterwards, user can examine these registers at leisure.

– What should I do when an output port is not being used?

When an output port is not being used, one can simply ignore the output port or assign the value open
in the port map instantiation. For instance, bdi_size⇒ open, would tell the synthesis tool to ignore this
output port.

7 Universal Testbench and Test Vector Generation

Our supporting codes include the

– universal testbench for any authenticated cipher core that follows the GMU Hardware API
– AETVgen: Authenticated Encryption Test Vector generation script
– C codes of the CAESAR candidates from the SUPERCOP distribution.

The testbench is located in the folder: $root/src_tb,
the test vector generation script in: $root/software/AETVgen,
and the C codes of CAESAR candidates in $root/software/CAESAR.

AETVgen generates a comprehensive set of test vectors for a specific CAESAR candidate, based on the
reference C code of that candidate, and additional parameters, provided by the user.

7.1 Compiler and interpreter prerequisites

Windows

– MinGW with MSYS
Download and install the latest version from http://www.mingw.org. MSYS should be included in the
installation package.
Note: MSYS is the console for MinGW in Windows

– Python v3.4+
Download and install the latest Python distribution package from https://www.python.org.
Note: The GMU code has been tested with v3.4

Linux

– Python v3.4+

7.2 Python package prerequisites

AETVGen requires two Python packages:

– PyCrypto
– cffi

In Windows, the installation of these two packages can be done by calling the easy_install script, typically
located in C:/Python/Scripts.

 C:\Python\Scripts> easy_install PyCrypto
 C:\Python\Scripts> easy_install cffi

In Linux, the installation procedure of these packages is dependent on the package manager used by the user.
As a result, we do not cover this issue in detail.

7.3 Quick User Guide

This section provides a step-by-step quick user guide.

1. Create shared libraries (*.dll in Windows and *.so in Linux)
(a) In console, navigate to the CAESAR folder ($root/software/CAESAR).

Note: For Windows, perform this step using msys console
(b) type

 make

2. Generate the script using a pre-defined settings
(a) Modify the main method in $root/software/AETVgen/gen.py using your favorite editor to call

a pre-defined method.
(b) In console, type

 gen.py

3. Three test vector files (pdi.txt, sdi.txt and do.txt) should be generated in AETVgen folder.

http://www.mingw.org
https://www.python.org

Pre-defined Methods have the following format:
 $Method($NumberTestVector, $TestMode, $Verbose, $Decrypt)

where,

– $Method is the name of the pre-defined method. Typically the name of the algorithm is used, i.e.
AES_GCM .

– $NumberTestV ector is the number of test vectors to be generated by the script.
– $TestMode is the method in which the AETVgen will generate the test vectors. Currently, the following

modes are supported:
• False: Generate randomized test vector based on the given parameters.
• 0 : Generate test vectors with 0x5555.. for key, 0xA0A0... for AD, 0xFFFF... for data.
• 1 : Similar to 0 except input data is randomized

For $TestMode = 0 and 1, the test vectors will produce a pre-defined routine following the description
provided below:

 Msg 1 = AEAD encrypt [AD Size= 1, Msg Size=0]
 Msg 2 = AEAD decrypt [AD Size= 1, Msg Size=0]
 Msg 3 = AEAD encrypt [AD Size= 0, Msg Size=1]
 Msg 4 = AEAD decrypt [AD Size= 0, Msg Size=1]
 Msg 5 = AEAD encrypt [AD Size= 1, Msg Size=1]
 Msg 6 = AEAD decrypt [AD Size= 1, Msg Size=1]
 Msg 7 = AEAD encrypt [AD Size= blockSize, Msg Size=blockSize]
 Msg 8 = AEAD decrypt [AD Size= blockSize, Msg Size=blockSize]
 Msg 9 = AEAD encrypt [AD Size= blockSize-1,Msg Size=blockSize-1]

 Msg 10 = AEAD decrypt [AD Size= blockSize-1,Msg Size=blockSize-1]
 Msg 11 = AEAD encrypt [AD Size= blockSize+1,Msg Size=blockSize+1]
 Msg 12 = AEAD decrypt [AD Size= blockSize+1,Msg Size=blockSize+1]
 Msg 13 = AEAD encrypt [AD Size= blockSize*2,Msg Size=blockSize*2]
 Msg 14 = AEAD decrypt [AD Size= blockSize*2,Msg Size=blockSize*2]
 Msg 15 = AEAD encrypt
 [AD Size= X where 0<X<blockSize*2 and X /= Y,
 Msg Size= Y where 0<Y<blockSize*2]
 Msg 16 = AEAD decrypt
 [AD Size= X where 0<X<blockSize*2 and X /= Y,
 Msg Size= Y where 0<Y<blockSize*2]
 Msg 17 = AEAD encrypt [AD Size= blockSize*3,Msg Size=blockSize*3]
 Msg 18 = AEAD decrypt [AD Size= blockSize*3,Msg Size=blockSize*3]
 Msg 19 = AEAD encrypt [AD Size= blockSize*4,Msg Size=blockSize*4]
 Msg 20 = AEAD decrypt [AD Size= blockSize*4,Msg Size=blockSize*4]
 ...

– $V erbose prints output from the modified CAESAR program that is encapsulated by the #ifdef DBG
... #endif macro. Accepted values are either True or False.

– $Decrypt performs decryption after encryption. By default, AETVgen only generates test vectors for the
encryption operation. This flag should be used in conjunction with the $V erbose operation to view the
output of decryption operation. Accepted values are either True or False.

7.4 Debugging

Oftentimes, it maybe necessary to view the intermediate state of the encryption or decryption operation. It
is up to the user to add the necessary debugging information to the C source code. This can be done by
printing values of the relevant variables into the screen. It is recommended to surround a print statement
with the #ifdef preprocessor directive, so that when $V erbose is set to False, this information will not be
printed out, e.g.,

 #ifdef DBG
 printf ("%02X", state);
 #endif

Note: The user will need to recompile the shared library again in order for the changes in the source
codes to take effect.

7.5 Addition of a new library

The script currently supports a limited set of CAESAR libraries. In order to add an additional library to
the script, one needs to perform modification in C and Python. It must be noted that the instruction in this
section assumes that the new library follows the CAESAR software API.

C-related modification

– Modification of the header files and macros in encrypt.c file, located in the reference implementation
(ref) folder of the targeted algorithm
1. Headers

 // Old
 #include " ../../ crypto_aead.h"
 // New
 #include " ../../ crypto_aead.h"
 #include " ../../ dll .h"

2. Insert the pre-defined macros, EXPORT, in front of the primary function calls, crypto_aead_encrypt()
and
crypto_aead_decrypt()

 EXPORT int crypto_aead_encrypt(
 ...
)

 EXPORT int crypto_aead_decrypt(
 ...
)

– Modification of the global Makefile located inside the $root/CAESAR folder. This can be done by
inserting your new algorithm in the list of primitives at the top of the file as shown below:

 PRIMITIVES = \
 $new_library \

Note: Do not forget to recompile the code according to the above instruction. You may also need to perform
"Make clean" first.

Python-related modification

1. In the init() method of AETVgen.py, add a new ID to the list of supported CAESAR algorithms. The
ID of the new algorithm should be unique and does not necessarily need to be the same as the name of
the library.

 self .supportedCaesarAlg = [$new_algorithm_id, ...]

2. Add appropriate parameters and the library that the new algorithm should be targeted at, e.g.:

 elif algorithm.lower() == "$new_algorithm_id":
 expTagSize = 16
 expKeySize = 16
 expNPUBSize = 12
 lib = "$new_library"
 self .blockSize = 16

3. In the gen.py, create a new method with pre-defined settings for ease of reuse:

 def $new_algorithm_id(size, testMode, verbose, decrypt):
 args = {’stdout’: False , ’sizePIO’: 4, ’sizeSIO’ : 4,
 ’sizeTag’ : 16, ’sizeKey’: 16, ’sizeNPUB’: 12,
 ’verbose’ : verbose, ’testMode’: testMode,
 ’decrypt’: decrypt}
 aetv = AETVgen.AETVgen(’$new_algorithm_id’, **args)
 aetv.genTestVectors(size)

4. Add a new method to main

 if __name__ == ’__main__’:
 testMode = 1
 verbose = False
 decrypt = False
 $new_algorithm_id(20, testMode, verbose, decrypt)

Note: Replace $new_algorithm with the name of your algorithm, e.g. "AES_GCM".

8 Generation and Publication of Results

Generation of results is possible for AEAD, AEAD Core, and CipherCore (see Fig. 9). We strongly recommend
generating results primarily for AEAD Core. This recommendation is based on the fact that

– CipherCore has an incomplete functionality and a full-block-width interface,
– Using AEAD may cause difficulty with setting BRAM usage to 0 (as often desired in order to easily

calculate throughput to area ratio).

The results for Xilinx FPGAs can be generated using any of the development and benchmarking flows
shown in Figs. 11, Figs. 12, and Figs. 13.

Manual
Design

Manual Optimization

Netlist

FPGA Tools

Functional
Verification

Timing
Verification

HDL Code

Results
Place & Route

Post

Informal Specification Test Vectors

Fig. 11: Traditional Development and Benchmarking Flow

8.1 Wrappers

For Virtex 7 and Zynq, we recommend generating results using Xilinx Vivado [17], operating in the Out-of-
Context (OOC) mode [18]. In this mode, no pin limit applies.

For Virtex 6 and below, we recommend using a simple wrapper, with 5 ports: clk, rst, sin, sout,
piso_mux_sel, provided as a part of supporting files in the folder
$roots/src_rtl/wrappers

8.2 Optimization Strategies

For Virtex 7 and Zynq, we recommend the use of 25 default optimization strategies available in Xilinx
Vivado. For Virtex 6 and below, we recommend using Xilinx ISE and ATHENa [19], [20]. For Altera FPGAs,
we suggest using Altera Quartus II and ATHENa.

8.3 Overheads

The first preliminary results regarding an overhead introduced by extending CipherCore with AEAD Core
are summarized in Fig. 14. As seen in this figure, the overhead does not exceed 18% even for the smallest
investigated cipher cores, and reaches values in the range of 2-3% for the biggest cores.

Netlist

FPGA Tools

Informal Specification Test Vectors

Functional
Verification

Manual
Design

HDL Code

Automated Optimization

Timing

Results
VerificationPlace & Route

Post

Xilinx ISE + ATHENa

Vivado + Default Strategies

Fig. 12: Extended Traditional Development and Benchmarking Flow

Netlist

FPGA Tools

High−Level
Synthesis

Estimated
Results

Software
Verification

Reference Implementation in C

Manual Modifications
(pragmas, tweaks)

HLS−ready C code

HDL Code
Functional
Verification

Timing
Verification

Test Vectors

Automated Optimization Xilinx ISE + ATHENa

Results

Vivado + Default Strategies

Place & Route
Post

Fig. 13: Alternative HLS-Based Development and Benchmarking Flow

Fig. 14: AEAD Core vs. CipherCore Area Overhead of Virtex 6 FPGA

8.4 Database of Results

The ATHENa database of results for authenticated ciphers is available at
http://cryptography.gmu.edu/athena under Results Database.

After receiving an account in the database, the designers can enter results by themselves. Additionally,
the ATHENa Option Optimization Tool supports automatic generation of results suitable for uploading to
the database.

9 Unsupported Features and Future Work

The currently unsupported features of the GMU Hardware API include:

– processing of Secret Message Number, Nsec
– full use of Message ID
– full use of Key ID.

The possible future extensions of the API and supporting codes include:

– detection and reporting of input formatting errors
– support for two-pass algorithms
– accepting inputs with padding done in software
– accepting inputs with key scheduling done in software
– support for multiple streams of data.

10 Conclusions

In this paper, we have described our proposal for a complete Hardware API for authenticated ciphers,
including the interface and communication protocol. The design with the GMU Hardware API is facilitated
by

– Detailed specification

http://cryptography.gmu.edu/athena

– Universal testbench and Automated Test Vector Generation
– PreProcessor and PostProcessor Units for high-speed implementations
– Universal wrappers for generating results
– Source codes of AES and Keccak Permutation F
– Ease of recording and comparing results using ATHENa database.

The GMU proposal is open for discussion and possible improvements through better specification as well as
better implementation of supporting codes.

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. (2014, Mar.)
Cryptographic competitions. [Online]. Available: http://competitions.cr.yp.to/index.html

2. J. Salowey, A. Choudhury, and D. McGrew, “AES Galois Counter Mode (GCM) cipher suites for TLS,” RFC
5288 (Proposed Standard), Aug 2008. [Online]. Available: https://tools.ietf.org/html/rfc5288

3. D. McGrew and D. Bailey, “AES-CCM cipher suites for TLS,” RFC 6655 (Proposed Standard), July 2012.
[Online]. Available: https://tools.ietf.org/html/rfc6655

4. ARM. AMBA Specifications. [Online]. Available: http://www.arm.com/products/system-ip/amba-specifications.
php

5. PCI-SIG. Specifications. [Online]. Available: https://pcisig.com/specifications
6. IBM. Processor Local Bus (128-bit). [Online]. Available: https://www-01.ibm.com/chips/techlib/techlib.nsf/

techdocs/3BBB27E5BCC165BA87256A2B0064FFB4
7. Altera. (2015, March) Avalon Interface Specifications. [Online]. Available: https://www.altera.com/content/

dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
8. Xilinx. (2012, December) Logicore IP Fast Simplex Link (FSL) V20 Bus (v2.11f). [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
9. OpenCores. (2010) Wishbone B4: WISHBONE System-on-Chip (SoC)Interconnection Architecture for Portable

IP Cores. [Online]. Available: http://cdn.opencores.org/downloads/wbspec_b4.pdf
10. National Institute of Standards and Technology. (2014, Mar.) Third (Final) Round Candidates. [Online].

Available: http://csrc.nist.gov/groups/ST/hash/sha-3/
11. K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehensive Methodology for Comparing Hardware

Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs,” in Cryptographic Hardware and Embedded
Systems, CHES 2010, ser. Lecture Notes in Computer Science, S. Mangard and F.-X. Standaert, Eds., vol. 6225.
Springer Berlin Heidelberg, 2010, pp. 264–278.

12. E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing hardware performance of fourteen round two SHA-3
candidates using FPGAs,” Cryptology ePrint Archive, Report 2010/445, 2010.

13. Z. Chen, S. Morozov, and P. Schaumont, “A hardware interface for hashing algorithms,” Cryptology ePrint
Archive, Report 2008/529, 2008.

14. B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Marnane, “A hardware wrapper
for the SHA-3 hash algorithms,” Cryptology ePrint Archive, Report 2010/124, 2010.

15. A. Moradi, “A Hardware Implementation of POET,” Germany, Jan 2015. [Online]. Available: https:
//groups.google.com/forum/#!msg/crypto-competitions/j0goqKCqFMI/SYG5-61mEcwJ

16. C. Arnould, “Towards Developing ASIC and FPGA Architectures of High-Throughput CAESAR Candidates,”
Master’s thesis, ETH Zurich, March 2015.

17. Xilinx. Vivado Design Suite. [Online]. Available: http://www.xilinx.com/products/design-tools/vivado.html
18. ——, Vivado Design Suite User Guide: Hierarchical Design, April 2015. [Online]. Available: http:

//www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf
19. K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, and B. Y. Brewster, “ATHENa – automated

tool for hardware evaluation: Toward fair and comprehensive benchmarking of cryptographic hardware using
FPGAs,” in 20th International Conference on Field Programmable Logic and Applications - FPL 2010. IEEE,
2010, pp. 414–421.

20. Cryptographic Engineering Research Group (CERG) at GMU. ATHENa: Automated Tool for Hardware
EvaluatioN. [Online]. Available: https://cryptography.gmu.edu/athena/

http://competitions.cr.yp.to/index.html
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc6655
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
https://pcisig.com/specifications
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3BBB27E5BCC165BA87256A2B0064FFB4
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/
https://groups.google.com/forum/#!msg/crypto-competitions/j0goqKCqFMI/SYG5-61mEcwJ
https://groups.google.com/forum/#!msg/crypto-competitions/j0goqKCqFMI/SYG5-61mEcwJ
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug905-vivado-hierarchical-design.pdf
https://cryptography.gmu.edu/athena/

Appendix A: Generics used by the PreProcessor and/or the PostProcessor

Table A1: Generics used by the PreProcessor and/or the PostProcessor

Pre- Post- Name Default Brief
Processor Processor Value Definition

x x W 32 Public data input and Data output width (bits)
x SW 32 Secret data input width (bits)
x NPUB_SIZE 64 Npub size (bits)
x ABLK_SIZE 64 Block size of associated data (bits)
x x DBLK_SIZE 128 Block size of message and ciphertext (bits)
x KEY_SIZE 128 Key size (bits)
x x TAG_SIZE 128 Tag size (bits)
x x BS_BYTES 4 The number of bits required to hold the size of an

incomplete block, expressed in bytes =
log2dmax(ABLK_SIZE, DBLK_SIZE)/8e

x PAD 0 Enable 10* padding to a multiple of a block size.
x PAD_STYLE 1 [0] = No actual padding, the unit will produce

bdi_pad_loc, [1] = Pad10*, [2] = ICEPOLE’s
specific mode, [3] = Keyak’s specific mode

x PAD_AD 1 (Active when PAD=1) [0] Disable padding for AD
segment [1] Enable padding for AD segment

x x PAD_D 1 (Active when PAD=1) [0] Disable padding for
data segment [1] Enable padding for data segment
[2] Enable padding for data segment and add an
additional block if message size % block size = 0

x CTR_AD_SIZE 64 The width of the len_a port representing the
length of associated data

x CTR_D_SIZE 64 The width of the len_d port representing the
length of data (the length of message for encryp-
tion, and the length of ciphertext for decryption

x PLAINTEXT_MODE 0 Plaintext input handling mode. See Table A2 for
more details.

x x CIPHERTEXT_MODE 0 Ciphertext output handling mode. See Table A3
for more details.

x x REVERSE_DBLK 0 [0] Ciphertext block arrives as normal [1] Cipher-
text block arrives in a reversed order (last block
first).

Table A2: Extended description of PLAINTEXT_MODE. Note: (*) default option. (**) Npub related signals
are disabled.

Generic Mode Description
Value
0* N_A_M Separate Nonce, Associated Data, and Message segments.
1** NA_M The Associated Data segment contains Nonce concate-

nated with Associated Data.
2** AN_M The Associated Data segment contains Associated Data

concatenated with Nonce.
3 N_A_M_A Separate Nonce, Associated Data - Header, Message, and

Associated Data - Trailer segments.

The operations specific to each CIPHERTEXT_MODE value are further described below:

Table A3: Extended description of CIPHERTEXT_MODE. Note: (*) default option. (**) not yet supported.
(***) partially supported.

Generic Mode Description
Value
0* C_T Separate Ciphertext and Tag segments.
1** CT The Ciphertext segment contains Ciphertext concate-

nated with Tag.
2*** Cexp_T Separate Ciphertext and Tag segments. Ciphertext seg-

ment is expanded to a multiple of the block size.

(0) CT
during encryption
– len_d = |M |
– The tag output of the Datapath is not used
– The output processor does not wait for 1 at the tag_write output of the Datapath
– The size of C in the ciphertext segment header = |M |+ |T |

during decryption
– The size of C in the ciphertext segment header = |M |+ |T |
– len_d = |M |+ |T | (|M | is calculated inside of the datapath)
– The exp_tag input of the Datapath is not used.
– The exp_tag_ready input of the Controller is not used. Datapath

(1) C_T
during encryption
– len_d= |M |
– The tag output of the Datapath is used
– The output processor waits for 1 at the tag_write output of the Datapath
– The size of C in the ciphertext segment header = |M |

during decryption
– The size of C in the ciphertext segment header = |M |
– len_d = |M |
– The exp_tag input of the Datapath is used.
– The exp_tag_ready input of the Controller is used.

(2) Cexp_T
during encryption
– len_d = |M |
– The tag output of the Datapath is used
– The output processor waits for 1 at the tag_write output of the Datapath
– The size of C in the ciphertext segment header = |M | but the output processor expects block_size ∗
d|M |/block_sizee bits of the ciphertext

during decryption
– The size of C in the ciphertext segment header = |M |, but the input processor reads and passes to the

Datapath block_size ∗ d|M |/block_sizee bits of the ciphertext
– len_d = |M |
– The exp_tag input of the Datapath is used.
– The exp_tag_ready input of the Controller is used.

Appendix B: PreProcessor Ports

Table B4: PreProcessor Ports

Name Direction Width Definition
clk in 1 Global clock signal
rst in 1 Global reset signal (synchronous)
pdi in W Public data input
pdi_valid in 1 Public data input valid
pdi_ready out 1 Public data input ready
sdi in SW Secret data input
sdi_valid in 1 Secret data input valid
sdi_ready out 1 Secret data input ready
key out KEY_SIZE Key data
bdi out DBLK_SIZE Input block data
npub out NPUB_SIZE Public message number (Npub). This port is in-

active if PLAINTEXT_MODE = 1 or 2.
exp_tag out TAG_SIZE Expected tag data. This output is valid for au-

thenticated decryption operation.
len_a out CTR_AD_SIZE [SEGMENT INFO] Length of authenticated data

in bytes (used in some algorithms)
len_d out CTR_D_SIZE [SEGMENT INFO] Length of data in bytes (used

in some algorithms)
key_ready out 1 Key ready signal. This signal indicates that the

key is available.
key_needs_ update out 1 Key needs an update signal. This signal indicates

to the crypto core that the key should be updated
(i.e., new round keys calculated). The crypto core
should update the key before the next input is
processed.

key_updated in 1 Return signal from the crypto core acknowledging
that the key has been updated

npub_ready out 1 [INPUT INFO] Npub ready signal. This port is
inactive if PLAINTEXT_MODE = 1 or 2.

bdi_ready out 1 Block ready signal
bdi_proc out 1 [INPUT INFO] Input processing. This signal in-

dicates that the current input is being processed.
This signal will remain high from the moment of
decoding an instruction describing the way of pro-
cessing a given input to the moment when the last
block of the input has been fully processed. This
signal is low after reset and in any interval be-
tween two consecutive inputs (including the time
of decoding and executing any Activate Key in-
structions).

bdi_ad out 1 [SEGMENT INFO] Input block is an authenti-
cated data

bdi_nsec out 1 [SEGMENT INFO] Input block is a secret mes-
sage number

bdi_decrypt out 1 [INPUT INFO] Current input should be de-
crypted.

bdi_pad out 1 [BLOCK INFO] Current block has been padded
by an external program/unit [Note: Not fully im-
plemented]

bdi_eot out 1 [BLOCK INFO] Current block is the last block
of its type. There may be more data blocks be-
longing to different segments following this block.
For instance, if the current block is IV, the subse-
quent block is generally either of type message or
authenticated data.

bdi_eoi out 1 [BLOCK INFO] Current block is the last block of
the given public data input (i.e., all segments as-
sociated with a given message or ciphertext). This
signifies that the following block will be the first
block of the group of segments associated with
another message or ciphertext..

bdi_nodata out 1 [BLOCK INFO] Current block has no data (it
contains only padding)

bdi_read in 1 Return signal from the crypto core indicating that
data block is being read

bdi_size out BS_BYTES [BLOCK INFO] The size of the current block in
bytes (0 for full blocks)

bdi_valid_bytes out DBLK_SIZE/8 [BLOCK INFO] Number of valid bytes of BDI.
bdi_pad_loc out DBLK_SIZE/8 [BLOCK INFO] Pad location. An active bit indi-

cates the starting point of the padding location.
Note: Must set PAD=1 (set PAD_STYLE=0 if
no padding is required)

msg_auth_done in 1 Message authentication completion signal. This
signal indicates that the comparison is completed
for authenticated decryption and data in exp_tag
port can be overwritten.

exp_tag_ready out 1 Expected tag (exp_tag) ready signal.
bypass_fifo_full in 1 Bypass FIFO indicating that it is full
bypass_fifo_wr out 1 Write signal to bypass FIFO

[INPUT INFO]. Auxiliary signal that remains valid until a given message is fully processed. Deactivation is typically
done at the end of input.
[SEGMENT INFO]. Auxiliary signal that remains valid for the current segment. The value changes when a new
segment is received via the PDI data bus. For length information, the values are reset for every new block of data.
[BLOCK INFO]. Auxiliary signal that is applicable only to the current block. This signal can be considered valid as
long as bdi_read signal has not been received from CipherCore.

Appendix C: PostProcessor Ports

Table C5: PostProcessor Ports
Port Direction Width Definition

clk in 1 Global clock signal
rst in 1 Global reset signal (synchronous)
do out W Output data out
do_ready in 1 Output ready
do_valid out 1 Output write
bypass_data in W Bypass FIFO data
bypass_empty in 1 Bypass FIFO empty
bypass_rd out 1 Bypass FIFO read
bdo_ready out 1 Signal indicating that a new set of data block is

ready to be received
bdo_write in 1 Input data write
bdo_data in BLOCK_SIZE Input data from crypto core
tag_ready out 1 Signal indicating a new tag data is ready to be

received
tag_write in 1 Tag data write
tag_data in TAG_SIZE Input tag from from crypto core
msg_auth_done in 1 Message authentication completion signal
msg_auth_valid in 1 Message authentication valid signal
bypass_fifo_data in W Bypass FIFO data
bypass_fifo_empty in 1 Bypass FIFO empty signal
bypass_fifo_rd out 1 Bypass FIFO read signal
aux_fifo_din out W Auxiliary FIFO input
aux_fifo_ctrl out 4 Auxiliary FIFO control signals
aux_fifo_dout in W Auxiliary FIFO output
aux_fifo_status in 3 Auxiliary FIFO status signals

	GMU Hardware API for Authenticated Ciphers

